

WMJ (Warmadewa Medical Journal), Vol. 10, No.2, November 2025, Page. 59-69

Early Parenteral Nutrition (PN) As A Mortality Risk Factor in COVID-19 Patients at the Intensive Care Unit (ICU) of RSUP Dr. Kariadi

I Putu Prayoga Ratha^{1*}, Niken Puruhita², Aryu Chandra², Siti Fatimah Muis², Enny Probosari²

¹Department of Clinical Nutrition Science, Faculty of Medicine, Universitas Udayana, Indonesia

²Department of Nutrition, Faculty of Medicine, Universitas Diponegoro, Indonesia

*Correspondence author: prayogaratha@gmail.com

Abstract

Mortality among COVID-19 patients admitted to intensive care units (ICUs) is consistently reported to be higher than among non-ICU patients. Early parenteral nutrition (PN) is generally avoided due to its potential complications; however, many critically ill COVID-19 patients require PN because of inadequate enteral intake or contraindications to enteral nutrition. This study aimed to evaluate the effect of early PN administration and other clinical risk factors on mortality among COVID-19 patients treated in the ICU of Dr. Kariadi General Hospital. This analytical observational study used a retrospective cohort design based on secondary data from COVID-19 patients admitted to the ICU of Dr. Kariadi General Hospital between March and September 2020. A total sampling approach was applied, including all patients aged ≥ 18 years who received PN, EN, or a combination of both during ICU care. Statistical analyses were conducted using Chi-square tests and logistic regression. A total of 188 patients were included, with a mean age of 53.5 ± 13.0 years; 62.8% were male and 66.5% had comorbidities. ARDS was present in 89.3% of patients, and 56.4% required mechanical ventilation. Early PN was administered to 32.8% of patients. By day 3 of ICU care, mean energy and protein adequacy reached 32.4% and 66.6%, respectively. Overall ICU mortality was 53.7%. Bivariate analysis showed significant associations between mortality and comorbidities ($p = 0.023$), mechanical ventilation ($p < 0.0001$), energy deficit ($p = 0.002$), and protein deficit ($p = 0.039$). Early PN was not significantly associated with mortality ($p = 0.918$). Multivariate logistic regression identified mechanical ventilation (adjusted for ARDS status; RR 6.20, 95% CI 1.29–29.72; $p = 0.022$) and energy deficit (RR 2.15, 95% CI 1.01–4.57; $p = 0.045$) as independent predictors of mortality. Early PN was not associated with increased mortality among critically ill COVID-19 patients in this ICU cohort. In contrast, mechanical ventilation—particularly in patients with ARDS—and inadequate energy intake were independent predictors of mortality. These findings highlight the importance of optimizing energy delivery and implementing careful ventilatory management to improve clinical outcomes in critically ill COVID-19 patients.

Keywords: Risk factors, early PN, mortality, COVID-19, ICU, mechanical ventilation, energy deficit

INTRODUCTION

Although global attention to COVID-19 has diminished since the international public health emergency was lifted, the disease continues to provide important insights for critical care practice, particularly in relation to nutritional management and organ support in severe respiratory illness. During the early phase of the pandemic in 2020, critically ill COVID-19 patients presented unique challenges for ICU teams, including profound systemic inflammation, respiratory failure requiring mechanical ventilation, and marked hypermetabolism that frequently resulted in significant nutritional deficits. These condi-

tions often made it difficult to meet energy and protein requirements through enteral nutrition alone, thereby necessitating the use of parenteral nutrition (PN).⁽¹⁻³⁾ Although the incidence of COVID-19 has since declined, knowledge gained from ICU management remains relevant for other severe viral pneumonias and for preparedness in future respiratory pandemics. Understanding how factors such as the timing of PN initiation, ventilation strategies, and adequacy of energy intake influence patient outcomes is essential to refining critical care nutrition protocols.

COVID-19, caused by SARS-CoV-2, was declared a pandemic by the World

Health Organization (WHO) in March 2020. Despite global declines in cases and deaths by May 2021, Indonesia, particularly the province of Central Java, continued to experience substantial disease burden. Approximately 5% of COVID-19 patients develop critical illness, with ICU mortality rates reported between 45–60%, especially among those requiring mechanical ventilation.(4) Mortality risk factors include advanced age, organ dysfunction, and poor nutritional status. Nutritional support is therefore integral to patient management. Critically ill COVID-19 patients commonly exhibit hypermetabolism and rapid muscle loss, while being unable to eat orally, thus requiring enteral nutrition (EN) or, when necessary, PN.(4-6)

Risk factors for mortality include advanced age, organ dysfunction, and nutritional status. Nutritional support plays a crucial role in patient outcomes. Critically ill COVID-19 patients often experience hypermetabolism and muscle mass loss, yet are frequently unable to eat orally, thus requiring enteral nutrition (EN) or parenteral nutrition (PN).(5,7,8)

The optimal timing for PN initiation in critically ill patients remains a subject of ongoing debate due to varied findings across studies. Some evidence suggests that early PN (<48 hours) may increase the risks of infection, hyperglycemia, and delayed recovery, potentially through mechanisms such as autophagy suppression, particularly in patients who are well-nourished or at low risk of malnutrition.(9-13) ESPEN guidelines recommend initiating PN within 3–7 days if EN is contraindicated, with early PN considered only in cases of severe malnutrition or high nutritional risk, such as among patients with sepsis or shock for whom EN is not feasible.(14,15) Large trials, including EPaNIC and CALORIES, have shown that delaying PN can reduce infection rates without increasing mortality, (9,16) whereas in severely malnourished patients, PN may reduce the risk of death and other complications.(17,18) Thus, decisions regarding PN administration should be individualized based on nutritional status, clinical condition, infection risk, and an

assessment of the balance between potential benefits and cost-related risks.(5,15,19)

This study aims to evaluate whether early PN administration constitutes a risk factor for mortality among critically ill COVID-19 patients in the ICU of Dr. Kariadi General Hospital.

METHOD

Study Design and Setting

This analytical observational study employed a retrospective cohort design and was conducted in the Intensive Care Unit (ICU) of Dr. Kariadi General Hospital, Semarang, Indonesia. The study analyzed secondary data extracted from the electronic medical records (EMR) of patients admitted between March and September 2020.

Population and Sampling

The study population comprised adult patients (≥ 18 years) with a confirmed diagnosis of COVID-19 who received nutritional therapy during their ICU stay. A total sampling approach was used, whereby all eligible patients who met the inclusion criteria within the study period were included.

Inclusion Criteria

- Confirmed diagnosis of COVID-19 based on RT-PCR results
- Age ≥ 18 years
- Receipt of enteral nutrition (EN), parenteral nutrition (PN), or a combination of both during ICU hospitalization

Exclusion Criteria

- Presence of underlying conditions known to independently influence mortality or nutritional metabolism (e.g., malignancy, chronic kidney disease requiring dialysis, advanced liver failure, or uncontrolled endocrine disorders)
- Transfer to or from another healthcare facility before completion of ICU treatment
- Missing or incomplete key clinical or nutritional data in the EMR (e.g., absence of documented nutritional intake or mortality outcome)

Definition of Variables

Early parenteral nutrition (PN) was defined as initiation of PN within ≤ 3 days (≤ 72 hours) after ICU admission, whereas late PN referred to initiation > 3 days after admission. Energy deficit was defined as failure to achieve $\geq 80\%$ of the prescribed energy requirement by day 3 of ICU care. Protein deficit was defined as failure to achieve $\geq 80\%$ of the prescribed protein requirement by day 3. Mechanical ventilation (MV) refers to the use of invasive ventilatory support during ICU treatment. Mortality was defined as in-hospital death occurring during ICU admission.

Data Collection and Analysis

Data extracted from EMR records included demographic characteristics, comorbidities, type and timing of nutritional therapy, ARDS status, use of mechanical ventilation, and clinical outcomes. Statistical analyses were performed using SPSS software.

Descriptive statistics were presented as means \pm standard deviation (SD) for continuous variables and as frequencies and percentages for categorical variables. Associations between categorical variables were evaluated using the Chi-square test. Variables with $p < 0.25$ in bivariate analysis, as well as those deemed clinically relevant, were entered into a multivariate logistic regression model to identify independent predictors of mortality. Results were ex-

pressed as risk ratios (RR) with 95% confidence intervals (CI), and statistical significance was determined at $p < 0.05$.

The study protocol was approved by the Medical Research Ethics Committee of Diponegoro University and Dr. Kariadi General Hospital, and all procedures adhered to the ethical principles outlined in the Declaration of Helsinki.

RESULT

A total of 188 COVID-19 patients admitted to the ICU were included in the analysis. The mean age was 53.5 ± 13.0 years, with 62.8% being male and 66.5% presenting with at least one comorbidity, most commonly diabetes mellitus and hypertension. The majority of patients developed ARDS (89.3%), and 56.4% required mechanical ventilation (MV). Early PN was initiated in 32.8% of patients, while most received enteral nutrition (EN) alone or in combination with supplemental PN. By the third day of ICU care, mean energy adequacy was 32.4%, and mean protein adequacy reached 66.6%. The overall ICU mortality rate was 53.7%.

These findings are consistent with international reports demonstrating that male sex and obesity contribute to higher COVID-19 mortality risk, and that comorbidities further exacerbate disease severity through mechanisms involving systemic inflammation, immunosenescence, and impaired organ function.(20-22)

Table 1. Sample Characteristics

	n (%)	Mean \pm SD (n = 188)	Min - Max
Age		53.5 ± 13.0	25 - 85
Age Group			
Elderly	62 (33.0)		
Adult	126 (67.0)		
Sex			
Men	118 (62.8)		
Women	70 (37.2)		
BMI		26.2 ± 4.7	12.8 - 48
Asia Pacific Classification			
Morbid Obesity	8 (4.3)		
Grade II Obesity	24 (12.8)		
Grade I Obesity	84 (44.7)		
Overweight	31 (16.5)		
Normal weight	37 (19.7)		
Underweight	4 (2.1)		

Comorbidity			
Yes	125 (66.5)		
No	63 (33.5)		
Type of Comorbidity			
Cardio-cerebrovascular disease	37 (19.7)		
Diabetes Mellitus	66 (35.1)		
Hypertension	63 (33.5)		
ARDS Status			
Yes	167 (89.3)		
No	20 (10.7)		
ARDS Severity			
Severe	71 (42.5)		
Moderate	66 (39.5)		
Mild	30 (18.0)		
MV Usage			
Yes	106 (56.4)		
No	82 (43.6)		
Feeding Route			
EN + supplemental PN	124 (66.0)		
EN	62 (33.0)		
PN Starting Day		3,9 ± 2.4	1 - 15
Early PN			
Yes	39 (32.8)		
No	80 (67.2)		
Energy and Protein Target Achievement (Day 3)			
EN + sPN	61 (32.4)		
EN	124 (66.0)		
Mortality			
Death	101 (53.7)		
Survive	87 (46.3)		
Energy Deficit			
Yes	54 (28.7)		
No	134 (71.3)		
Protein Deficit			
Yes	81 (43.1)		
No	107 (56.9)		

Barbosa et al. reported that by day 4 of ICU care, 75.6% of COVID-19 patients received enteral nutrition (EN), 8.7% received total parenteral nutrition (TPN), and 13% received a combination of both.(23) In comparison, the present study demonstrated a lower achievement of nutritional adequacy, consistent with previous reports documenting persistent deficits among critically ill COVID-19 patients. Silvah et al. noted protein deficits of up to 75%, whereas Melika et al.(24,25) found that by day 5 of ICU admission, energy and protein intake reached only 46% and 58% in survivors, and 42% and 50% in non-survivors, respectively.

The ICU mortality rate in this study

was 53.7%, which is similar to mortality reported in China (61.5%) and Indonesia (44.67%).(4,26) Multivariate analysis further examined factors contributing to mortality. As presented in **Table 2**, mechanical ventilation (MV) was strongly associated with increased mortality, conferring a 43.68-fold higher risk. **Table 3** shows no significant association between early parenteral nutrition (PN) and mortality. In contrast, both energy and protein deficits were significantly associated with adverse outcomes. Patients with an energy deficit had a 3.09-fold increased mortality risk (**Table 4**), while those with a protein deficit had a 1.93-fold increased risk (**Table 5**).

Table 2. Association Between Mechanical Ventilation Use and Mortality

	Mortality	
	Non-survivor	Survivor
VM Usage	Yes	91 (90.1)
	No	10 (9.9)
	Total	101 (100)
		15 (17.2)
		72 (82.8)
		81 (100)

χ^2 100.886; df 1; p: <0.0001 RR 43.68 (95% CI 18.52 – 102.99)

Table 3. Association Between Early Parenteral Nutrition and Mortality

	Mortality	
	Non-survivor n (%)	Survivor n (%)
Early PN	Yes	31 (50.0)
	No	31 (50.0)
	Total	62 (100)
		30 (52.6)
		27 (47.4)
		57 (100)

χ^2 : 0.82; df: 1; p: 0.918 RR 0.90 (95% CI 0.43-1.84)

Table 4. Association Between Energy Deficit and Mortality

	Mortality	
	Non-survivor n (%)	Survivor n (%)
Energy Deficit	Yes	39 (38.6)
	No	62 (61.4)
	Total	101 (100)
		15 (17.2)
		72 (82.7)
		87 (100)

χ^2 : 10.42; df: 1; p: 0.002 RR 3.09 (95% CI 1.52-5.99)

Table 5. Association Between Protein Deficit and Mortality

	Mortality	
	Non-survivor n (%)	Survivor n (%)
Protein Deficit	Yes	51 (50.5)
	No	50 (49.5)
	Total	101 (100)
		30 (82.7)
		57 (34.4)
		87 (100)

χ^2 : 4.88; df: 1; p: 0.039 RR 1.93 (95% CI 1.07-3.49)

Table 6. Results of Multivariate Analysis

Variable	B	Wald	P value	RR (CI 95%)
Comorbidity	0.550	2.654	0.103	1.73 (0.89 – 3.36)
ARDS Status x VM Usage	1.826	5.218	0.022	6.20 (1.29 – 29.72)
Energy Deficit	0.770	4.034	0.045	2.15 (1.01 – 4.57)
Protein Deficit	0.226	0.462	0.497	0.25 (0.65 – 2.40)

These findings underscore the importance of sufficient nutritional support in critically ill COVID-19 patients. Although the timing of PN initiation did not independently influence mortality, inadequate achievement of energy and protein requirements markedly increased the risk of death, highlighting the need for individualized nutrition plans, ongoing monitoring, and prompt adjustment of nutritional therapy to optimize clinical outcomes.

DISCUSSION

Mechanical Ventilation and Mortality

Mortality in this cohort occurred predominantly among patients requiring mechanical ventilation (MV), consistent with previous studies reporting mortality rates exceeding 50% among ventilated COVID-19 patients.(20,22,27,28) MV likely reflects the severity of ARDS and contributes to mortality through ventilator-associated complications and reduced ability to deliver adequate nutrition.²⁹ These findings reinforce the importance of strategies aimed at preventing ventilator-induced lung injury, including minimizing alveolar overdistention, avoiding excessive oxygen exposure, and preventing cyclical alveolar collapse.

Timing of Parenteral Nutrition

Meta-analyses have demonstrated no significant difference in mortality between early enteral nutrition (EN) and early parenteral nutrition (PN) in critically ill patients.(26,30,31) Similarly, in this study, the proportion of patients receiving early PN was comparable to those receiving later PN, and mortality did not differ significantly between groups ($p = 0.918$). These results align with previous studies (10, 32, 33) indicating that early PN does not influence ICU mortality, although it may facilitate achievement of energy and protein goals.(12,17) Other trials comparing early versus delayed PN initiation(31, 34) likewise found no significant difference in mortality.

Energy and Protein Deficits

Although fewer patients experi-

enced energy and protein deficits than those who did not, chi-square analysis revealed significant associations between these deficits and mortality. This observation is consistent with findings from Silva et al.,(25) who emphasized that critically ill COVID-19 patients are highly vulnerable to malnutrition and exhibit higher mortality when energy–protein intake is inadequate. A prospective cohort study (35) similarly demonstrated increased mortality among patients with energy and protein deficits. Additionally, Silvah et al. reported lower mortality among ICU patients receiving >0.8 g/kg/day of protein. Gastrointestinal intolerance and hemodynamic instability likely contributed to nutritional deficits in ICU patients.(36)

Several studies and systematic reviews recommend early PN, whether supplemental or total, as a strategy to meet energy and protein targets in critically ill COVID-19 patients.(37,24,38) Early PN may also reduce the risk of intestinal ischemia and decrease healthcare worker exposure to aerosolized droplets by reducing the need for enteral tube manipulation.(21)

Multivariate Analysis

Bivariate analyses identified significant associations between mortality and comorbidities, MV use, energy deficit, and protein deficit, while age, ARDS status, and early PN showed no significant associations. Variables with $p < 0.25$ or with strong theoretical relevance, comorbidities, MV use, early PN, energy deficit, and protein deficit, were included in the multivariate model.

After adjustment, two factors remained independently associated with mortality. MV use increased the risk of death by 6.2-fold, regardless of ARDS status. Energy deficit was also a strong predictor, conferring a 2.15-fold increased risk of mortality. MV use may directly compromise energy and protein adequacy by limiting feeding routes and contributing to hemodynamic instability. (24,39) The notable interaction between MV and ARDS reinforces that patients with severe ARDS require early MV and are at elevated risk for

complications without effective, tailored management.(29, 40)

Clinical Implications

Energy requirements in critically ill COVID-19 patients are higher than in non-critically ill patients due to hypercatabolic states.(41, 42) Many severe cases fail to meet these elevated requirements, and adequate nutritional intake in the acute phase has been associated with improved survival.(35) Conversely, delayed nutritional therapy contributes to worsening comorbidities, respiratory decline, cytokine storm progression, and ultimately increased mortality. (43, 44) These findings underscore the critical importance of timely, adequate nutritional support in critically ill COVID-19 patients, particularly those receiving mechanical ventilation.

Limitations

This study has several limitations. First, energy requirements were not measured using indirect calorimetry, the gold standard recommended by international guidelines, which may have affected the accuracy of energy target estimations. Second, PN administration was not stratified into supplemental versus total PN, limiting detailed subgroup analysis. Lastly, micro-nutrient levels were not evaluated despite their potential relevance to outcomes in critically ill COVID-19 patients.

CONCLUSION

Early administration of parenteral nutrition (PN) was not identified as a risk factor for mortality among COVID-19 patients admitted to the ICU of Dr. Kariadi General Hospital. In contrast, comorbidities, the use of mechanical ventilation (MV), and deficits in both energy and protein intake were significantly associated with increased mortality. Multivariate analysis further demonstrated that MV, adjusted for ARDS status, and energy deficit remained independent predictors of death among critically ill COVID-19 patients.

REFERENCES

1. South China Morning Post. Indonesia issues Covid-19 warning over surge in cases in Asia. 2 June 2025. <https://www.scmp.com/week-asia/health-environment/article/3312774/indonesia-issues-covid-19-warning-over-surge-cases-asia>.
2. Asia News Network. Surge in Covid-19 cases: Virus making a comeback in Thailand, Singapore, Hong Kong, US. 1 June 2025. <https://asianews.network/surge-in-covid-19-cases-virus-making-a-comeback-in-thailand-singapore-hong-kong-us>.
3. Mothership.sg. New Covid-19 variant NB.1.8.1 on the rise around the world. 3 June 2025. <https://mothership.sg/2025/06/new-covid-19-variant-rise-around-world>.
4. Ochoa JB, Cárdenas D, Goiburu ME, Bermúdez C, Carrasco F, Correia MITD. Lessons Learned in Nutrition Therapy in Patients With Severe COVID-19. *J Parenter Enter Nutr* [Internet]. 2020 Nov [cited 2021 May 27];44(8):1369–75. Available from: <https://onlinelibrary.wiley.com/doi/10.1002/jpen.2005>
5. Thibault R, Seguin P, Tamion F, Pichard C, Singer P. Nutrition of the COVID-19 patient in the intensive care unit (ICU): a practical guidance. *Crit Care* [Internet]. 2020 Dec [cited 2021 May 27];24(1):447. Available from: <https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03159-z>
6. Yu P, Cassiere H, DeRosa S, Bocchieri K, Yar S, Hartman A. Hypermetabolism and Coronavirus Disease 2019. *J Parenter Enter Nutr* [Internet]. 2020 Sep [cited 2021 Jul 22];44(7):1234–6. Available from: <https://onlinelibrary.wiley.com/doi/10.1002/jpen.1948>
7. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med* [Internet]. 2020 May [cited 2021 Jul 3];8(5):475–81.

Available from: <https://linkinghub.elsevier.com/retrieve/pii/S2213260020300795>

8. Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, et al. Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China. *Ann Intensive Care* [Internet]. 2020 Dec [cited 2021 Jul 3];10(1):73. Available from: <https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-020-00689-1>

9. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus Late Parenteral Nutrition in Critically Ill Adults. *N Engl J Med* [Internet]. 2011 Aug 11 [cited 2021 May 27];365(6):506–17. Available from: <http://www.nejm.org/doi/abs/10.1056/NEJMoa1102662>

10. Doig GS. Early Parenteral Nutrition in Critically Ill Patients With Short-term Relative Contraindications to Early Enteral Nutrition: A Randomized Controlled Trial. *JAMA* [Internet]. 2013 May 22 [cited 2021 May 27];309(20):2130. Available from: <http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.5124>

11. Gunst J, Vanhorebeek I, Casaer MP, Hermans G, Wouters PJ, Dubois J, et al. Impact of Early Parenteral Nutrition on Metabolism and Kidney Injury. *J Am Soc Nephrol* [Internet]. 2013 Jun [cited 2021 Jul 28];24(6):995–1005. Available from: <https://jasn.asnjournals.org/lookup/doi/10.1681/ASN.2012070732>

12. Hellerman Itzhaki M, Singer P. Advances in Medical Nutrition Therapy: Parenteral Nutrition. *Nutrients* [Internet]. 2020 Mar 8 [cited 2021 May 27];12(3):717. Available from: <https://www.mdpi.com/2072-6643/12/3/717>

13. for the Supplemental Parenteral Nutrition Clinical Investigators, Ridley EJ, Davies AR, Parke R, Bailey M, McArthur C, et al. Supplemental parenteral nutrition versus usual care in critically ill adults: a pilot randomized controlled study. *Crit Care* [Internet]. 2018 Dec [cited 2021 May 27];22(1):12. Available from: <https://ccforum.biomedcentral.com/articles/10.1186/s13054-018-1939-7>

14. Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, et al. ESPEN Guidelines on Parenteral Nutrition: Intensive care. *Clin Nutr* [Internet]. 2009 Aug [cited 2021 May 27];28(4):387–400. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0261561409000983>

15. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). *J Parenter Enter Nutr* [Internet]. 2016 Feb [cited 2021 May 27];40(2):159–211. Available from: <http://doi.wiley.com/10.1177/0148607115621863>

16. Braunschweig CL, Levy P, Sheean PM, Wang X. Enteral compared with parenteral nutrition: a meta-analysis. *Am J Clin Nutr* 2001;74:534–42.

17. Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. *The Lancet* [Internet]. 2013 Feb [cited 2021 May 27];381(9864):385–93. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0140673612613518>

18. Jonker MA, Hermsen JL, Sano Y, Heneghan AF, Lan J, Kudsk KA. Small intestine mucosal immune system response to injury and the impact of parenteral nutrition. *Surgery* [Internet]. 2012 Feb [cited 2021 Jun

20];151(2):278–86. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0039606010005775>

19. Ichimaru S, Sono M, Fujiwara H, Seo R, Ariyoshi K. The Impact of Rate of Feeding Advancement after Early Initiation of Enteral Nutrition in Critically Ill, Underweight Patients: A Single-Center Retrospective Chart Review. *Food Nutr Sci* [Internet]. 2016 [cited 2021 Jul 30];07(11):939–54. Available from: <http://www.scirp.org/journal/doi.aspx?DOI=10.4236/fns.2016.711093>

20. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA* [Internet]. 2020 May 26 [cited 2021 May 27];323(20):2052. Available from: <https://jamanetwork.com/journals/jama/fullarticle/2765184>

21. Djaharuddin I, Munawwarah S, Nurulita A, Ilyas M, Tabri NA, Lihawa N. Comorbidities and mortality in COVID-19 patients. *Gac Sanit* [Internet]. 2021 [cited 2023 Jul 2];35:S530–2. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0213911121002880>

22. Auld SC, Harrington KRV, Adelman MW, Robichaux CJ, Overton EC, Caridi-Scheible M, et al. Trends in ICU Mortality From Coronavirus Disease 2019: A Tale of Three Surges. *Crit Care Med* [Internet]. 2022 Feb [cited 2023 Apr 10];50(2):245–55. Available from: <https://journals.lww.com/10.1097/CCM.0000000000005185>

23. Barbosa CDL. The Time for Parenteral Nutrition is Now: 12 Months Caring for Patients with Severe COVID-19. *Int J Nutrology* [Internet]. 2021 Mar [cited 2023 Jul 2];14(01):021–5. Available from: <https://ijn.zotarellifilhoscientificworks.com/index.php/ijn/article/view/206>

24. Arkin N, Krishnan K, Chang MG, Bittner EA. Nutrition in critically ill patients with COVID-19: Challenges and special considerations. *Clin Nutr* [Internet]. 2020 Jul [cited 2021 Jul 30];39(7):2327–8. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0261561420302235>

25. Ting THY, Lo THM, Lo WWT, Ding Q, Yuk DKL, Hui E, et al. Inadequate energy and protein intake, underweight and malnutrition are associated with in-hospital mortality among COVID -19 rehabilitation patients during the omicron outbreak in Hong Kong. *AGING Med* [Internet]. 2022 Sep [cited 2023 Apr 9];5(3):204–10. Available from: <https://onlinelibrary.wiley.com/doi/10.1002/agm2.12220>

26. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. *JAMA* [Internet]. 2020 Apr 7 [cited 2021 Jul 10];323(13):1239. Available from: <https://jamanetwork.com/journals/jama/fullarticle/2762130>

27. Nishikimi M, Jafari D, Singh N, Shinozaki K, Sison CP, Shoaib M, et al. Mortality of Mechanically Ventilated COVID-19 Patients in Traditional versus Expanded Intensive Care Units in New York. *Ann Am Thorac Soc* [Internet]. 2022 Aug [cited 2023 Apr 9];19(8):1346–54. Available from: <https://www.atsjournals.org/doi/10.1513/AnnalsATS.202106-705OC>

28. Shah S, Hollands JM, Pontiggia L, Bingham AL. Impact of the Time to Initiation of Parenteral Nutrition on Patient Outcomes in Critically Ill Adults. *Nutr Metab Insights* [Internet]. 2019 Jan [cited 2021 May 27];12:117863881985931. Available from: <http://journals.sagepub.com/doi/10.1177/1178638819859315>

29. Berlin DA, Gulick RM, Martinez FJ.

Severe Covid-19. Solomon CG, editor. *N Engl J Med* [Internet]. 2020 Dec 17 [cited 2023 Apr 16];383(25):2451–60. Available from: <http://www.nejm.org/doi/10.1056/NEJMcp2009575>

30. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The Lancet* [Internet]. 2020 Feb [cited 2021 Jun 19];395(10223):497–506. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0140673620301835>

31. Sandström R, Drott C, Hyltander A, Arfvidsson B, Scherstén T, Wickström I, et al. The Effect of Postoperative Intravenous Feeding (TPN) on Outcome Following Major Surgery Evaluated in a Randomized Study: *Ann Surg* [Internet]. 1993 Feb [cited 2021 Jun 20];217(2):185–95. Available from: <http://journals.lww.com/00000658-199302000-00013>

32. Elhassan AO, Tran LB, Clarke RC, Singh S, Kaye AD. Total Parenteral and Enteral Nutrition in the ICU. *Anesthesiol Clin* [Internet]. 2017 Jun [cited 2021 May 27];35(2):181–90. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S1932227517300095>

33. Thomson RJ, Hunter J, Dutton J, Schneider J, Khosravi M, Casement A, et al. Clinical characteristics and outcomes of critically ill patients with COVID-19 admitted to an intensive care unit in London: A prospective observational cohort study. Lazzeri C, editor. *PLOS ONE* [Internet]. 2020 Dec 15 [cited 2023 Jun 25];15(12):e0243710. Available from: <https://dx.plos.org/10.1371/journal.pone.0243710>

34. Khalid I, Doshi P, DiGiovine B. Early Enteral Nutrition and Outcomes of Critically Ill Patients Treated With Vasopressors and Mechanical Ventilation. *Am J Crit Care* [Internet]. 2010 May 1 [cited 2021 Jul 28];19(3):261–8. Available from: <http://ajcc.aacnjournals.org/cgi/doi/10.4037/ajcc2010197>

35. Hajimohammadebrahim-Ketabforoush M, Vahdat Shariatipanahi Z, Vahdat Shariatipanahi M, Shahbazi E, Shahbazi S. Protein and Energy Intake Assessment and Their Association With In-Hospital Mortality in Critically Ill COVID-19 Patients: A Prospective Cohort Study. *Front Nutr* [Internet]. 2021 Aug 19 [cited 2023 Apr 9];8:708271. Available from: <https://www.frontiersin.org/articles/10.3389/fnut.2021.708271/full>

36. Fabião J, Sassi B, Pedrollo EF, Gerchman F, Kramer CK, Leitão CB, et al. Why do men have worse COVID-19-related outcomes? A systematic review and meta-analysis with sex adjusted for age. *Braz J Med Biol Res* [Internet]. 2022 [cited 2023 Jul 2];55:e11711. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2022000100352&tlang=en

37. Li G, Zhou C liang, Ba Y ming, Wang Y ming, Song B, Cheng X bin, et al. Nutritional risk and therapy for severe and critical COVID-19 patients: A multicenter retrospective observational study. *Clin Nutr* [Internet]. 2021 Apr [cited 2021 May 27];40(4):2154–61. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0261561420305124>

38. Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH, et al. Obesity and COVID-19: what makes obese host so vulnerable? *Immun Ageing* [Internet]. 2021 Dec [cited 2023 Jun 25];18(1):1. Available from: <https://immunidadeing.biomedcentral.com/articles/10.1186/s12979-020-00212-x>

39. Auld SC, Caridi-Scheible M, Blum JM, Robichaux C, Kraft C, Jacob JT, et al. ICU and Ventilator Mortality Among Critically Ill Adults With Coronavirus Disease 2019*. *Crit*

Care Med [Internet]. 2020 Sep [cited 2023 Apr 9];48(9):e799–804. Available from: <https://journals.lww.com/10.1097/CCM.00000000000004457>

40. Li T, Zhang Y, Gong C, Wang J, Liu B, Shi L, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr [Internet]. 2020 Jun [cited 2023 May 7];74(6):871–5. Available from: <http://www.nature.com/articles/s41430-020-0642-3>

41. Voelkle M, Gregoriano C, Neyer P, Koch D, Kutz A, Bernasconi L, et al. Prevalence of Micronutrient Deficiencies in Patients Hospitalized with COVID-19: An Observational Cohort Study. Nutrients [Internet]. 2022 Apr 29 [cited 2023 Jul 2];14(9):1862. Available from: <https://www.mdpi.com/2072-6643/14/9/1862>

42. Barbosa C de L. The Time for Parenteral Nutrition is Now: 12 Months Caring for Patients with Severe COVID-19. Int J Nutrology [Internet]. 2021 Mar [cited 2021 Jul 22];14(01):021–5. Available from: <http://www.thieme-connect.de/DOI/DOI?10.1055/s-0041-1728679>

43. Silvah JH, de Lima CMM, Nicoletti CF, Barbosa AC, Junqueira GP, da Cunha SF de C, et al. Protein provision and lower mortality in critically ill patients with COVID-19. Clin Nutr ESPEN [Internet]. 2021 Jul [cited 2021 Jul 28];S2405457721002497. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S2405457721002497>

44. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet [Internet]. 2020 Mar [cited 2023 Aug 4];395(10229):1054–62. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0140673620305663>