

WMJ (Warmadewa Medical Journal), Vol. 10, No.1, May 2025, Page. 12-27

In-Silico Study of Black Sea Cucumber (*Holothuria atra*) Active Compounds against *Plasmeprin 2* Protein of *Plasmodium falciparum*

De. Bima Kurnia Ramadhan¹, Prawesty Diah Utami^{2*}, Nita Pranitasari³, I Dewa Made Widi Hersana⁴, Dody Taruna⁵

¹Faculty of Medicine Hang Tuah University, Surabaya, Indonesia

²Parasitology Departement, Faculty of Medicine Hang Tuah University, Surabaya, Indonesia

³Histology Departement, Faculty of Medicine Hang Tuah University, Surabaya, Indonesia

⁴Internist Department, RSPAL Dr Ramelan Surabaya, Indonesia

⁵Fisiologi Departement, Faculty Medicine Hang Tuah University, Surabaya, Indonesia

*Correspondence Author : prawesty.diah@hangtuah.ac.id

Abstract

The existence of evidence of resistance to artemisinin derivatives as first-line malaria therapy is a problem that must be resolved. One of them is a marine biota, which has the potential to act as an anti-malarial, namely the black sea cucumber (*Holothuria atra* / *H. atra*). The aim of this research is to analyze *H. atra* anti-malarial activity against *P. falciparum* - plasmeprin 2 protein used in-silico approach. This type of research is experimental, using in-silico tests (computerized tests) on bioactive compounds and target proteins. This research analyzes several aspects: the preparation of materials and tools, the preparation of *P. falciparum* protein, the preparation of active compounds for *H. atra*, the prediction of compound and pathway potential, the prediction of interactions between plasmeprin protein and bioactive compounds, and the prediction of antimalarial inhibitors on active compounds. The results of Quantitative Structure-Activity Relationship/ QSAR analysis show that the biologically active compounds of sea cucumbers have anti-parasitic properties. Furthermore, the docking results show that 3 biologically active compounds from sea cucumbers have quite good inhibitory activity against *Plasmeprin 2* proteins, especially the compounds chlorogenic acid, catechin, and rutin. Chlorogenic acid compounds also have high PA values as antiparasitic agents, especially greater than 0.4. ADME/T demonstrated that chlorogenic acid and catechin conform to Lipinski's rule, but rutin fails to satisfy Lipinski's rule. Toxicity analysis showed that catechin (level 6) has lower toxicity than chlorogenic acid (level 4), and rutin (level 5). Therefore, it can be predicted that chlorogenic acid is the most potent compound in sea cucumbers with anti-malarial effects.

Keywords: *Holothuria atra*, *In silico*, molecular docking, antimalarial

INTRODUCTION

One of the many diseases that affects a large portion of the global population is malaria. In 2023, global malaria prevalence reached 263 million cases with 597,000 deaths, a 4% case increase from 2022. Africa bore 94% of cases and 95% of deaths, with 76% of fatalities among children under five (1). Indonesia reported 418,546 cases (down from 443,530 in 2022) and 120 deaths in 2023, contributing to 94% of Southeast Asia's malaria deaths alongside India. By April 2024, Indonesia's cases surged to 543,965 (93% in Papua), highlighting persistent regional disparities. Morbidity in Indonesia showed an Annual Parasite Incidence (API) of 1.6 per 1,000 nationally in 2022, while Papua's API

soared to 113.07 per 1,000 (2,3). Globally, 2024 trends indicate rising risks from climate change and drug resistance, with Africa remaining the epicenter (4). Despite progress (389 Indonesian districts malaria-free by 2023), challenges persist in high-transmission areas like Papua (5).

Malaria infection triggers various clinical abnormalities, and without adequate therapy, it can trigger severe complications, such as acute kidney failure, coma or cerebral malaria, hypovolemic shock, anemia, hypoglycemia, black water fever, or hemoglobinuria malaria(6,7).

WHO and the Indonesian Ministry of Health recommended ACT (Artemisinin Combination Therapy) therapy in 2004. (8,9). Resistance to artemisinin-based com-

bination therapy (ACT) is posing a growing threat to malaria treatment effectiveness. Mutations in the kelch13 gene (such as C580Y) in *Plasmodium falciparum* are the primary cause of parasite sensitivity to ACT, particularly in Southeast Asia (10,11). According to the WHO, artemisinin resistance is characterized by slow parasite clearance after treatment, which increases the risk of therapeutic failure when combined with resistance to the partner drug (12,13).

P. falciparum contains an aspartic protease called Plasmepsin 2, which is essential to the parasite's digestion of host haemoglobin in the acidic food vacuole. This enzyme starts the cleavage of native hemoglobin, denaturing it and supplying vital amino acids for the parasite's development and protein synthesis(14). This process is essential to the survival of the parasite because it helps control the osmolarity in the infected erythrocyte in addition to providing nutrients. Plasmepsin 2 is regarded as a promising target for antimalarial drug development due to its crucial function in hemoglobin degradation(15).

The black sea cucumber (*Holothuria atra*) can be one of the options for the treatment of malaria. Several researchers have previously researched the content of active compounds of *H. atra*. The study's results with HPLC measurements showed that *H. atra* contains several active ingredients, such as chlorogenic acid, pyrogallol, rutin, coumaric acid, and catechin (Febrianti, and Utami, 2022). Meanwhile, chlorogenic acid is the most abundant in black sea cucumber, which is 90% (17,18). These materials will later become the focus of this research. In-silico method, a method that uses computerization in the process of selecting and extracting active compounds and target proteins. This method predicts the bonds between receptors and proteins using computerization (19).

The aim of this research was to analyze *H. atra* antimalarial activity against *P. falciparum* - plasmepsin 2 protein using an in-silico approach. There are 4 parameters in this study: prediction of antiparasitic activity of *H. atra* using way; molecular dock-

ing between plasmepsin 2 *P. falciparum* and active compound of *H. atra*; ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) prediction; and toxicity prediction analysis of *H. atra* chemical compounds

METHODS

This study was conducted at Laboratorium Biomolekuler & Bioinformatika INBIO-Malang using the experimental study type and in silico as the method. Several steps of this research are as follows:

1. Prepare potential materials from *H. atra* and *P. falciparum*.
2. Data mining process (data collection) from various sources.
3. Predict antiparasitic activity.
4. Molecular docking
5. ADME Prediction
6. Predicting toxicity

Preparation

Based on a literature study, there are six active ingredients in *H. atra*—chlorogenic acid, pyrogallol, rutin, coumaric acid, catechin, and ascorbic acid—that are thought to have antimalarial properties (20).

Data mining

The initial step entails extracting bioactive compounds from *H. atra* via the database maintained by PubChem (<https://pubchem.ncbi.nlm.nih.gov/>) to acquire the SMILES notation for each compound (21). The three-dimensional crystal structure of the target protein, Plasmepsin 2 (5YIB), is obtained from the Protein Data Bank, or PDB (<https://www.rcsb.org/>) (22).

Predicting Antiparasit activity and Pathway of *H. Atra* Active Compound

The WAY2DRUG PASS Online Prediction web server (<http://www.pharmaexpert.ru/passonline/predict.php>) will be utilized in order to conduct an analysis of the antimalarial potential of active compounds derived from *H. atra* (23,24). The Quantitative Structure-Activity Relationship (QSAR) method is a computational approach that correlates mo-

lecular characteristics (structural and physicochemical) with biological activity. This enables us to predict the efficacy of a drug. QSAR analysis, which ultimately results in a Pa (Probability to Be Active). Pa is a value ranging from 0 to 1 that assesses the probability of a compound demonstrating a biological activity, predicated on its structural resemblance to established active molecules within a training dataset (25).

Molecular Docking Analysis

Docking analysis elucidates the interaction between receptors and ligands, as well as the affinity energy, to determine the potential of compounds as antimalarials. It also enables you to infer weak and strong affinities. A greater value indicates a more robust relationship(26).

After identifying the target protein structure and bioactive compounds, Discovery Studio 2019 eliminates the water molecules from the protein to prepare it (27), while PyRx v. 0.9.8 optimizes the energy of the ligands. Autodock Vina, in conjunction with PyRx version 0.9.8, is employed for docking purposes (28). If the value of the tested bioactive compound is similar to that of the control, it functions analogously to a protein target inhibitor. Docking targets the plasmeprin-2 of *P. falciparum* and the inhibitory compound KNI-10743. BioVia Discovery Studio 2019 is utilized to analyze their interactions.

ADMET Prediction Analysis

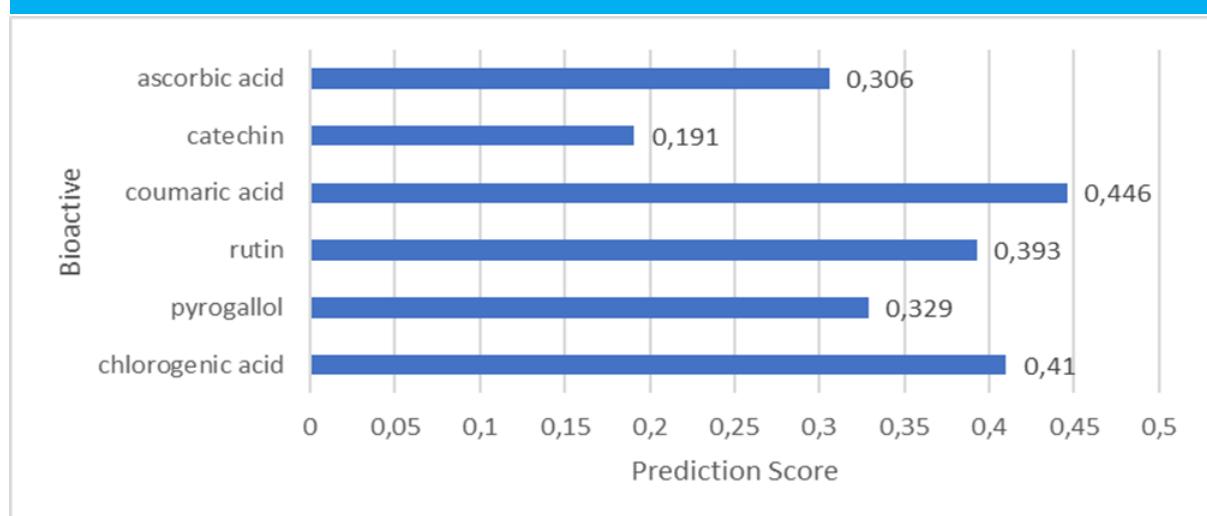
The ADMET prediction for each ligand is conducted in accordance with Lipinski's Rule of Five and analyzed utilizing AdmetLab2.0. An integrated, complementary online platform for precise and comprehensive ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) prediction of chemical compounds. It assists pharmaceutical developers in optimizing lead compounds and minimizing late-stage failures by assessing drug-likeness, pharmacokinetics, and toxicity

early in the development process (29).

Toxicity Prediction Analysis

A vital first step to guarantee that protox inhibitors are not only safe for human use but also efficient against the malaria parasite is toxicity testing of these molecules. ProTox-II is employed to evaluate the toxicity of the drug-likeness character, which demonstrates inhibitory effects on parasite cultures(https://toxnew.charite.de/protex_II/index.php?site=compound_input) (30).

The LD50 measure is employed to evaluate toxicity prediction, which indicates lethal doses at which 50% of the tested animal population dies because of exposure to the tested compound. LD50 values are used by ProTox-II to classify toxicity into six categories, ranging from highly toxic to non-toxic when ingested. According to the Globally Harmonized System (GHS), ProTox-II is classified into six toxicity levels based on the LD50 value (30), as follows:


- 1: fatal/ danger if ingested (≤ 5 mg/ Kg)
- 2: fatal if ingested (5 - 50 mg/ Kg)
- 3: toxic if ingested (50 – 300 mg/ Kg)
- 4: hazardous if ingested (300 – 2000 mg/ Kg).
- 5: may be harmful if ingested (2000 -5000 mg/ Kg).
- 6: non-toxic if ingested (> 5000 mg/Kg)

The toxicity of a compound decreases as it is ingested, as its level of toxicity increases (31)

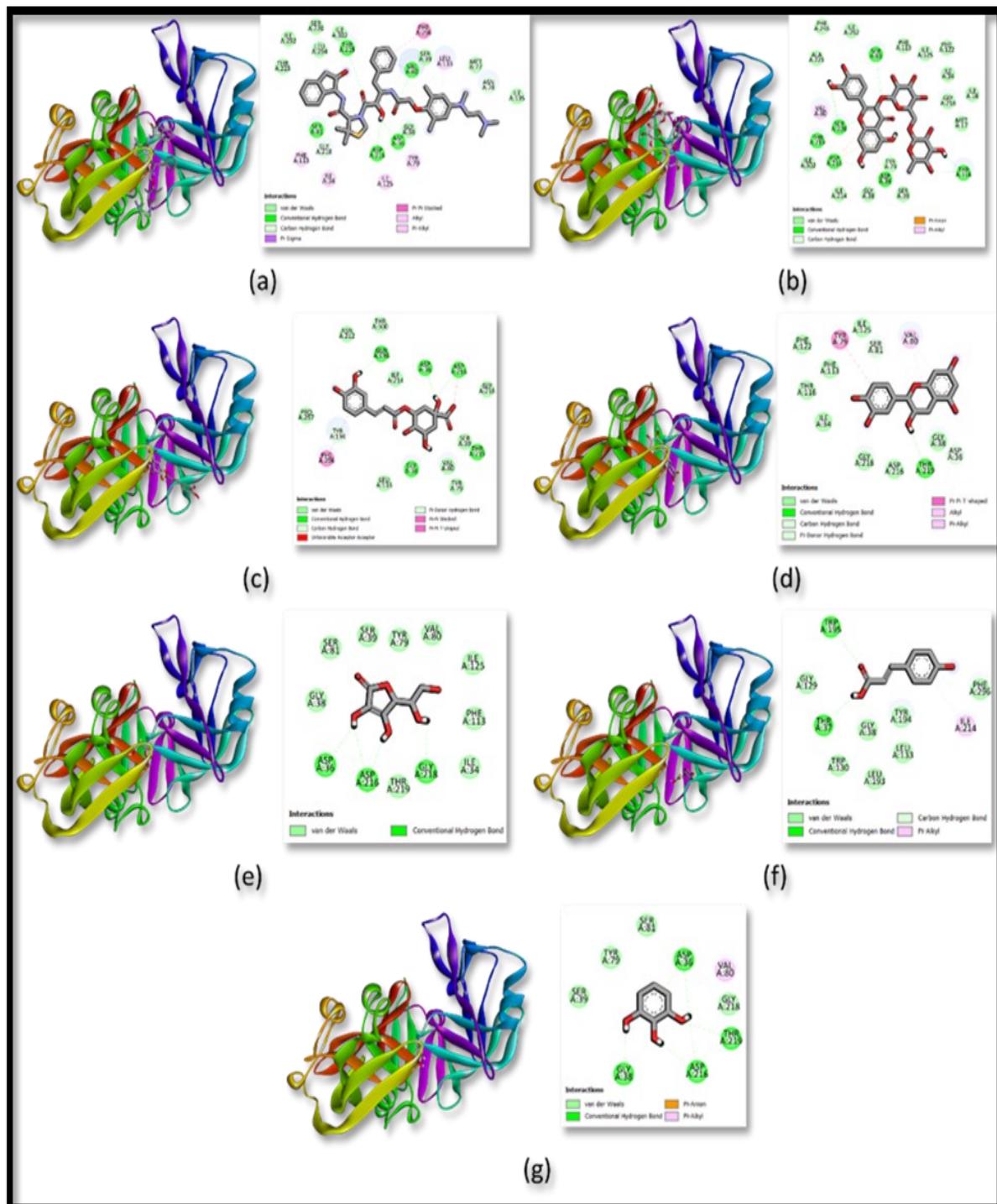
RESULT

Antimalarial Activity Prediction Analysis

Bioactive constituents in *H. atra* and their antiparasitic prediction analysis are represented by all of the active compounds, as shown in Figure 1. Contrary to coumaric acid, which has the highest Pa value of 0.446, catechin has a low potential as an antimalarial agent, according to the Probability to Be Active (Pa) assessment.

Figure 1. Antiparasitic Activity of *H. Atra* Active Compounds

The control molecule in this study was KNI-10743, which functions as a potent peptidomimetic inhibitor of plasmepsin-2 (PM2), an aspartic protease essential for the survival of *Plasmodium falciparum* through haemoglobin degradation. KNI-10743 exhibits no cytotoxic effects in human cell lines, establishing it as a dependable experimental control.


Binding affinity analysis is essential in pharmacology, facilitating rational drug design and assessment of therapeutic candi-

dates.

Binding affinity quantifies the interaction strength between a biomolecule (e.g., protein) and its ligand (e.g., drug), as measured by the equilibrium dissociation constant. The binding affinity prediction of *H. atra* active compounds towards PM2, as presented in Table 1, indicates that all active compounds exhibit a greater value than the control. This indicates that control exhibits a stronger affinity for PM2 than for the active compound of *H. atra*.

Table 1. Affinity Binding Prediction Analysis Between Plasmepsin-2 And Ligands

Receptor	Ligand	PDB ID	Binding Affinity (Kcal/mol)
Plasmepsin 2/ PM2	KNI-10743	5YIB	-9,1
	Rutin	5280805	-7,9
	Chlorogenic acid	1794427	-7,4
	Catechin	9064	-7,1
	Ascorbic acid	54670067	-5,1
	Coumaric acid	637542	-5,3
	Pyrogallol	1057	-4,6

Figure 2. Visualization of docking outcomes: a) Plasmepsin 2 Protein/KNI-10743 (control), b) Plasmepsin 2 Protein/Rutin, c) Plasmepsin 2 Protein/Chlorogenic Acid, d) Plasmepsin 2 Protein/Catechin, e) Plasmepsin 2 Protein/Ascorbic Acid, f) Plasmepsin 2 Protein/Coumaric Acid, g) Plasmepsin 2 Protein/Pyrogallol. The left side displays a three-dimensional visualization, whereas the right side illustrates the type of bond established between the ligand and the protein.

Table 2. Amino Acid Residues Interaction between Plasmepsin-2 with Ligand and Control

Protein	Ligand	Amino Acid Residues Interaction					
		Van der Waals	Hydrogen Bond	Hydrogen Karbon	Hydrophobic	Other	Electro static
PM2/ Plasmepsin2	PDB Control	A: ILE135	A: VAL80	A: GLY218	A: VAL80		
		A: SER134	A: SER81	A: LEU133	A: THR219		
		A: PHE296	A: THR219	A: ASP132	A: ILE302		
		A: LEU294	A: SER220		A: MET77		
		A: THR223	A: GLY218		A: ILE34		
		A: THR116	A: ASP36		A: ILE125	A: PHE113	
		A: GLY38	A: ASP216		A: TYR79		
		A: SER39			A: LEU133		
					A: ALA221		
					A: ILE292		
KNI- 10743		<u>A: THR223</u>	<u>A: ASP36</u>	<u>A: ASN78</u>	<u>A: VAL80</u>		
		<u>A: ILE292</u>	<u>A: ASP216</u>	<u>A: ASP36</u>	<u>A: PHE296</u>		
		<u>A: SER220</u>	<u>A: VAL80</u>	<u>A: GLY218</u>	<u>A: LEU133</u>		
		<u>A: LEU294</u>	<u>A: SER81</u>		<u>A: ILE34</u>		
		<u>A: ILE302</u>	<u>A: THR219</u>		<u>A: ILE125</u>		
		<u>A: SER39</u>			<u>A: TYR79</u>		
		<u>A: MET77</u>					
		<u>A: ILE135</u>					
		<u>A: GLY38</u>					
Rutin		<u>A: ALA221</u>	<u>A: ASP36</u>			<u>A: ASP36</u>	
		A: PHE246	<u>A: ASP216</u>			<u>A:</u>	
		<u>A: ILE292</u>	<u>A: THR116</u>			<u>A:</u>	
		<u>A: PHE113</u>	<u>A: SER81</u>				
		<u>A: ILE125</u>	<u>A: THR219</u>				
		A: PHE122	<u>A: SER220</u>				
		<u>A: ILE34</u>					
		<u>A: GLY218</u>		<u>A: SER220</u>	<u>A: VAL80</u>		
		A: ILE16					
		A: MET17					

	A: PRO297	A: GLN196	<i>A: GLY38</i>	A: TYR194
	A: ASN212	A: ASP36	A: TYR194	<u>A: PHE296</u>
	A: THR300	<u>A: ASP216</u>		
Chloro- genic Acid	A: ILE214	<i>A: GLY38</i>		
	<i>A: GLY218</i>	<u>A: THR219</u>		
	<u>A: SER39</u>			<i>A: ASP216</i>
	<i>A: VAL80</i>			
	<i>A: TYR79</i>			
	<i>A: LEU133</i>			
	<u>A: GLY38</u>		<u>A: ASP36</u>	<u>A: TYR79</u>
	<i>A: ASP216</i>		<i>A: SER81</i>	<u>A: VAL80</u>
	<i>A: GLY218</i>			
Catechin	<i>A: ILE34</i>			
	<u>A: THR116</u>	<u>A: THR219</u>		
	<i>A: PHE113</i>			
	A: PHE122			
	<i>A: ILE125</i>			
	<u>A: GLY38</u>	<i>A: GLY218</i>		
	<i>A: SER81</i>	<u>A: ASP216</u>		
	<u>A: SER39</u>	<u>A: ASP36</u>		
Ascorbic Acid	<i>A: TYR79</i>			
	<i>A: VAL80</i>			
	<i>A: ILE125</i>			
	<i>A: PHE113</i>			
	<i>A: ILE34</i>			
	<i>A: THR219</i>			
	<i>A: GLY129</i>	A: THR37		
	A: TRP130	A: TRP195		
Couma- ric Acid	<u>A: GLY38</u>			
	A: TYR194		A: TRP195	A: ILE214
	<i>A: LEU133</i>			
	A: LEU193			
	<i>A: PHE296</i>			
	<u>A: SER39</u>	<i>A: GLY38</i>		
Pyrogal- lol	<i>A: TYR79</i>	<u>A: ASP36</u>		
	<i>A: SER81</i>	<u>A: ASP216</u>	<u>A: VAL80</u>	<i>A: ASP36</i>
	<i>A: GLY218</i>	<u>A: THR219</u>		

Subsequently, Table 2 illustrates the interactions established between each PM2 and ligand sample (control and active compound of *H. atra*). Hydrogen, van der Waals, and hydrophobic bonds are the most prevalent based on the types of bonds formed. Amino acid residues highlighted in

bold represent those from the control ligand and that are preserved in the sample with identical bonding characteristics.

Meanwhile, residues in italics denote those preserved in the sample but with altered types and bond distances. Residues marked with a single underline

are those associated with the PDB control ligand retained in the sample.

According to the molecular docking results (Table 2; Figure 2) and binding af-

finity predictions (Table 1), three active compounds—rutin, chlorogenic acid, and catechin—exhibit high potency as antimalarial agents.

Table 3. ADME/T Prediction Analysis Of *H.atra* Bioactive Compound

ADME/T	Bioactive Compound of <i>H.atra</i>					
	Chlorogenic Acid	Pyrogallol	Rutin	Coumaric Acid	Catechin	Ascorbic Acid
MW	354,1	126,03	610,15	164,05	290,08	176,03
nHA	9	3	16	3	6	6
nHD	6	3	10	2	5	5
TPSA	164,75	60,69	269,43	57,53	110,38	114,29
LogP	0,331	0,458	-0,038	1,923	1,343	-1,42
Lipinski	Accepted	Accepted	Rejected	Accepted	Accepted	Accepted
Pgp-inh	0	0,001	0,005	0	0,008	0,001
Pgp-sub	0,992	0,002	0,997	0,017	0,01	0,089
HIA	0,455	0,046	0,876	0,009	0,035	0,069
F(20%)	0,991	0,982	0,038	0,004	0,998	0,918
F(30%)	0,998	0,959	0,999	0,194	1	0,978
BBB	0,264	0,043	0,041	0,29	0,029	0,073
H-HT	0,19	0,051	0,083	0,673	0,103	0,168
DILI	0,057	0,06	0,982	0,2	0,07	0,936
FDAMDD	0,558	0,028	0,01	0,031	0,136	0,009
Carcinogenicity	0,111	0,638	0,055	0,151	0,185	0,266

Note: Red indicates that the compound exhibits low druglikeness and bioavailability and may possess toxic potential as an isolated entity. (MW/molecular weight; nHA/hydrogen bond acceptors; nHD (hydrogen bond donors); TPSA (total polar surface area); LogP (octanol-water partition coefficient); Pgp-inh (P-glycoprotein inhibitor); Pgp-sub (P-glycoprotein substrate); HIA (Human Intestinal Absorption); F(20%)/ oral bioavailability $\geq 20\%$); F(30%)/ oral bioavailability $\geq 30\%$); BBB/blood brain barrier; H-HT/Human Hepatotoxicity; DILI/ Drug-Induced Liver Injury; and FDAMDD/FDA Maximum Recommended Daily Dose)

ADME/T Prediction Analysis

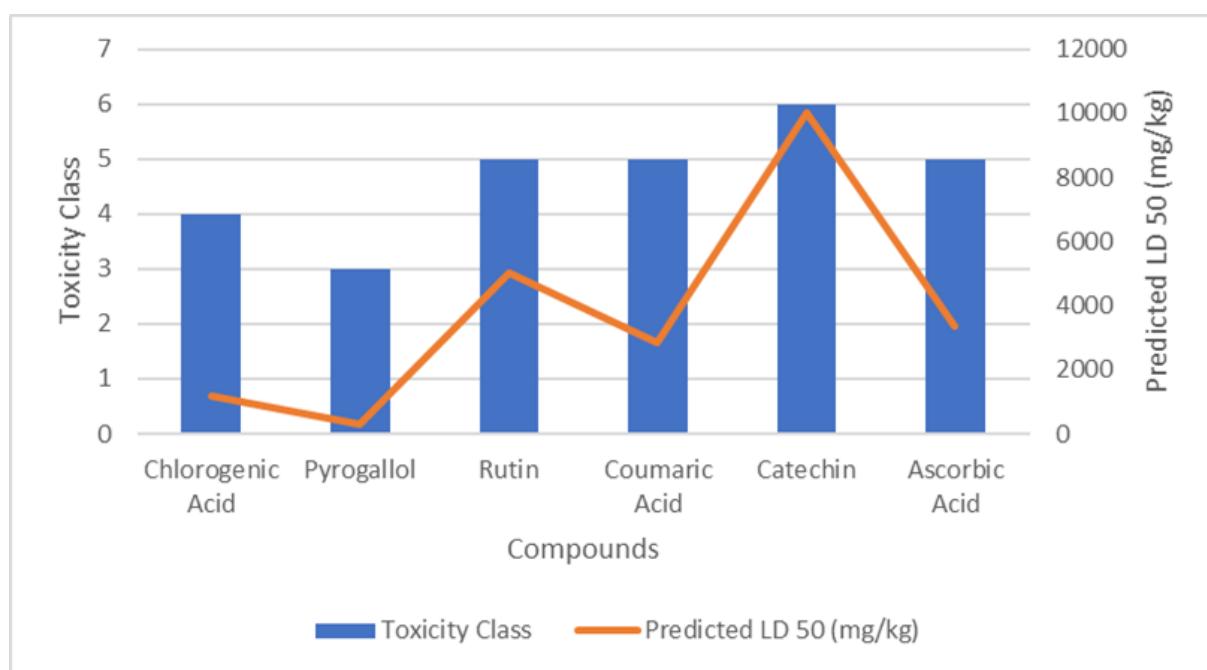
The ADMETlab database (Table 3) serves as a valuable resource for predicting

The Lipinski rule and the ADME/T characteristics of a compound. Lipinski's rule of five serves as a valuable guideline for differentiating drug-like molecules from their non-drug-like counterparts. Lipinski can forecast the chances of a compound's metabolic success or failure by analyzing its resemblance to existing drugs.

To comply with Lipinski's rule, compounds must demonstrate at least 2 of the 5 essential properties (Lipinski et al., 1997). The Lipinski rule of 5 outlines key criteria for drug-like properties, including a molec-

ular weight under 500 Dalton, a Log P value below 5 indicating high lipophilicity, fewer than 5 hydrogen bond donors, fewer than 10 hydrogen bond acceptors, and a TPSA (Topological Polar Surface Area) ranging from 60 to 140 \AA^2 .

According to the ADME/T analysis presented in Table 1, nearly all active compounds comply with Lipinski's rules, except for rutin.


Chlorogenic acid, pyrogallol, rutin, catechin, and ascorbic acid exhibit lower bioavailability than coumaric acid. Rutin and ascorbic acid can induce drug-induced liver injury (DILI), whereas other compounds do not cause tissue damage; however, all ac-

tive compounds lack carcinogenic properties.

Toxicity Prediction Analysis

Figure 2 presents the results of toxicity tests, revealing that the bioactive compound in *H. atra* with the lowest hazard level is

catechin, exhibiting an LD₅₀ of 10,000 mg.kg⁻¹ wt and categorised within toxicity class 6. In contrast, pyrogallol, which is classified as belonging to the third toxicity class, is the bioactive compound that poses the greatest risk.

Figure 2. Toxicity Prediction of *H. atra* Extract

DISCUSSION

Antiparasite Activity Prediction Analysis

The extract of *H. atra* comprises several active compounds exhibiting antiparasitic properties. The compounds comprise chlorogenic acid, pyrogallol, rutin, catechin, coumaric acid, and ascorbic acid. Considering the antiparasitic value (Pa), five compounds exhibit potential as effective antimalarials. The compounds include chlorogenic acid, ascorbic acid, rutin, pyrogallol, and coumaric acid. The Pa values of these three compounds exceed 0.3. Conversely, the bioactive compound catechin possesses a Pa value below 0.3, signifying its diminished efficacy as an antimalarial agent, as depicted in Figure 1.

Despite a compound exhibiting robust binding affinity or favorable structural

characteristics, various factors diminish its Pa (probability of activity) score in in silico analyses: (1) Structural characteristics and electronic attributes, compounds containing electron-withdrawing groups, such as nitro groups, or heterocyclic substitutions may exhibit diminished Pa scores owing to decreased bioactivity (32); (2) Suboptimal ADME properties may result in diminished Pa scores, notwithstanding elevated docking or binding affinity (19) (3) Certain in silico software exhibit a lack of transparency regarding their foundational algorithms, and the precision of Pa predictions is contingent upon the quality and diversity of the training data. If a compound's structure is inadequately represented in the model's database, the Pa score may be inaccurately low (19). QSAR methode

Molecular Docking of *H. atra* Active Compounds to Plasmeprsin 2

A higher binding affinity indicates that a ligand adheres more firmly and selectively to its target protein, thereby stabilizing the protein-ligand complex. Pharmaceutical design depends on strong binding to enhance potency and specificity for the intended biological effect (33,34).

Molecular docking analysis (Table 2 and Figure 2) demonstrated that all active compounds of *H. atra* in this study can bind to PM2 with the same amino acid residues as the control. But each active compound has different binding affinities (Table 1). The control substance (KNI-10743) has a higher binding affinity than *H. atra* active compounds. Nonetheless, there are three active constituents of *H. atra* that exhibit a binding affinity comparable to the control, specifically—rutin, chlorogenic acid, and catechin—that exhibit high potency as antimalarial agents.

Numerous prior in vivo and in vitro studies provide evidence supporting the antimalarial activity of active compounds from *H. atra*. In addition to their antimalarial effect, these active compounds exhibit another advantageous activity.

The first compound is rutin, which is a glycosylated flavonoid present in plants, renowned for its antioxidant, anticancer, and anti-inflammatory properties (35). Rutin demonstrates antiplasmodial activity against *P. falciparum*, with IC₅₀ values ranging from 3.53 to 10.38 μ M in both laboratory and field isolates, indicating moderate efficacy (36,37). Extracts from Achillea fragrantissima leaves (2024) have demonstrated the ability to inhibit the synthesis of β -hematin, a crucial process for the survival of malaria parasites (37). Synergistic effects that augment antimalarial potency have been observed when combined with other flavonoids, such as quercetin (36,37).

Coumaric acid is a derivative of hydroxycinnamic acid, commonly found in fruits and cereals (38). It possesses multiple activities, including antioxidant, anti-inflammatory, and anticancer properties. Coumaric acid interacts with PfOMPDC in

silico but exhibits negligible inhibitory effects in functional assays(39)

Catechin, an exceptional flavan-3-ol from the flavonoid family, is prevalent in green tea and is recognized for its significant antioxidant, cardioprotective, and anticancer properties (40). Several studies have explored the antimalarial activity of catechin through in vivo studies. Catechin extracted from *Osyris quadripartita* leaves exhibited 64.26% chemo suppression against *Plasmodium berghei* in mice at a dosage of 400 mg/kg. The extract demonstrated a 70.61% suppression rate, substantiating its traditional application for malaria treatment (41). In vitro study (2020) demonstrated that catechin inhibited β -hematin formation, essential for heme detoxification in *Plasmodium*, with an efficacy of 85.7% at 0.4 mM, albeit less potent than morin. This indicates that catechin interferes with heme polymerization, a mechanism essential for parasite survival (42).

Chlorogenic acid, a polyphenol prevalent in green coffee beans, serves as a neuroprotective agent and metabolic modulator. This active compound exhibits multiple effects, including anti-inflammatory, antioxidant, and antidiabetic activities (43). Moelyadi et al. (2020) demonstrated a strong binding affinity between chlorogenic acid to *Plasmodium falciparum* Orotidine 5-Monophosphate Decarboxylase (PfOMPDC) through molecular docking studies; however, no direct antiprotozoal activity was experimentally confirmed. (20). Phytochemical profiling serves as a foundational approach in understanding the chemical constituents of plants. Identified in plant extracts exhibiting antiplasmodial activity; however, the specific contribution of each component remains ambiguous (44).

Ascorbic Acid (Vitamin C) is a water-soluble antioxidant crucial for collagen synthesis and immune function. It functions as an antioxidant; however, at elevated doses, it produces reactive oxygen species, thereby diminishing the efficacy of artemisinin in malaria treatment. It functions as an enzyme cofactor, facilitating

dopamine β -hydroxylase and peptidylglycine α -amidating monooxygenase (45). Another study showed that ascorbic acid exhibits negative drug interactions, diminishing the efficacy of artemether by scavenging free radicals essential for the antimalarial action of artemisinin, resulting in reduced plasma concentration and therapeutic failure (46).

Pyrogallol is a phenolic compound characterized by a trihydroxybenzene structure, which transforms into purpurogallin in alkaline conditions, thereby augmenting xanthine oxidase inhibition and interfering with reactive oxygen species generation (47). Similar to artemisinin's mechanism, pyrogallol demonstrates moderate antimalarial efficacy ($IC_{50} = 2.84 \mu\text{M}$) by elevating the pH of the parasite's digestive vacuole. This disrupts parasite metabolism and the degradation of hemoglobin. It eradicates parasites by inhibiting the V-type $\text{H}^+ \text{-H-ATPase}$ proton pump, which is crucial for maintaining acidic vacuolar pH (48,49).

ADME/T Prediction Analysis

Lipinski's Rule of Five is a widely utilized method for predicting the oral bioavailability of drugs (50). Five active compounds comprise chlorogenic acid, pyrogallol, coumaric acid, catechin, and ascorbic acid, which satisfy Lipinski's criteria except for rutin. The glycosylated flavonoid rutin possesses an increased number of hydrogen bond donors and acceptors attributable to its sugar moieties. It is less pharmacologically similar and less prone to oral absorption (20).

The therapeutic efficacy is fundamentally contingent upon bioavailability, which refers to the fraction of an administered dose that attains systemic circulation (51). Coumaric acid demonstrates the highest bioavailability. The favorable physicochemical properties—elevated water solubility, efficient gastrointestinal absorption, and metabolic stability—account for this phenomenon (52).

Chlorogenic acid, despite its high water solubility, is swiftly metabolized and inadequately absorbed in the intestine, re-

sulting in a urinary excretion rate of merely 4.9%, in contrast to coumaric acid's 54.1% (53). Despite being water-soluble, pyrogallol and ascorbic acid exhibit restricted bioavailability due to rapid metabolism and excretion. The low bioavailability of rutin (<20%) primarily stems from its inadequate solubility and restricted permeability through intestinal membranes, which directly result from its non-adherence to Lipinski's rules. Despite being safer and relatively bioavailable (33% gastrointestinal absorption), catechin does not possess the efficacy of coumaric acid (20).

Drug-induced liver injury constitutes a significant challenge in drug development. Notwithstanding their intricate risk profile (Björnsson, 2021). Rutin and ascorbic acid influence liver function. Rutin at therapeutic doses safeguards the liver by diminishing oxidative stress and inhibiting profibrotic signaling pathways (55). Rutin alters liver enzyme levels at elevated concentrations or under specific pathological conditions (e.g., high-cholesterol diets), indicating potential hepatotoxicity (55,56).

Despite its recognized antioxidant properties, ascorbic acid can influence liver enzyme activity and induce hepatic damage, particularly when administered concurrently with other hepatotoxic medications. Both drugs induce drug-induced liver injury (DILI) at supratherapeutic or extended exposures, while providing protection at standard dosages (55–57).

Importantly, all these compounds lack carcinogenic properties and, in some cases, may even offer protective effects against cancer. These findings underscore the necessity of incorporating drug-likeness, pharmacokinetic, and safety profiles in the selection of phytochemicals for therapeutic development.

Toxicity Prediction Analysis

The prediction of toxicity is essential for assessing the therapeutic potential and safety of bioactive compounds. Compounds are categorized according to their lethal dose (LD_{50}) and mechanistic risks under the Globally Harmonized System (GHS)(58).

According to the data presented in Figure 2, catechin, a flavonoid prevalent in green tea, is categorized as non-toxic ($LD_{50} > 5,000$ mg/kg) owing to its advantageous safety profile. Although catechin shares structural similarities with epigallocatechin gallate (EGCG), which demonstrates hepatotoxicity at elevated doses, catechin does not possess reactive functional groups that induce oxidative stress (59).

Artemisinin exhibits moderate toxicity (Category 4) to humans and presents considerable environmental hazards (60,61). Chlorogenic acid has the same level of toxicity as artemisinin. Coumaric acid, rutin, and ascorbic acid have 5 levels of toxicity. Class 4 and 5 toxic drugs are safe for human use when administered within therapeutic ranges and adequately monitored. Regulatory frameworks and advancements in predictive toxicology render risks manageable, highlighting the significance of patient education and compliance with dosing protocols (62).

Pyrogallol has the highest toxicity level of all the compounds in this study (Class 3). Class 1 (extremely hazardous), Class 2 (highly hazardous), and Class 3 (moderately hazardous) are typically inappropriate for drug development due to safety concerns, although exceptions may occur under rigorous conditions (63).

CONCLUSION

In summary, there were three compounds of *H. atra* that had high activity to inhibit Plasmepsin 2: rutin, chlorogenic acid, and catechin. All active compounds except rutin conform to Lipinski's rule. Coumaric acid exhibits superior bioavailability compared to chlorogenic acid, rutin, and catechin. Rutin has the potency to induce liver injury. Catechin exhibits the lowest toxicity level (6 level) in comparison to rutin (5 level) and chlorogenic acid (4 level).

The findings of this research represent a preliminary phase in the identification of a novel antimalarial treatment protocol. The subsequent steps, which constitute the primary prerequisites for the formulation of a novel drug regimen, encompass *in vitro/in vivo* activity, selectivity, ADMET

profile, and potential for combination therapy. Validation via early-phase clinical trials is essential prior to commercialization.

ACKNOWLEDGEMENTS

The author would like to thank the Faculty of Medicine - Hang Tuah University Surabaya and the Inbio Lab for their contributions to the work and results of this *in silico* research.

REFERENCES

1. World Health Organization. World Malaria Report 2024. World Health Organization; 2024.
2. World Health Organization. Regional Data & Trends Briefing Kit: World Malaria Report 2024. 2024.
3. Kamila Sugiarta C, Jufri Sumampouw O, Roni Pinontoan O, Kesehatan Masyarakat Universitas Sam Ratulangi F, Latar Belakang A. Annual Parasite Incidence Malaria Di Kota Bitung Tahun 2021-2023. Sam Ratulangi Journal Of Public Health. 2024;5(2).
4. Peter Gething, Tasmin Symons, Wendy Woods, Nicholas Sukitsch, David Potere, Naomi Desai, Et Al. Climate Impacts On Malaria In Africa. 2024.
5. Directorate General Of Disease Prevention And Control, Ministry Of Health Of The Republic Of Indonesia. National Action Plan For Acceleration Of Malaria Elimination 2020-2026 (Revision) Directorate General Of Disease Prevention And Control Ministry Of Health Of The Republic Of Indonesia 2023. 2023.
6. Balaji S, Deshmukh R, Trivedi V. Severe Malaria: Biology, Clinical Manifestation, Pathogenesis, And Consequences. J Vector Borne Dis. 2020;57(1):1-13.
7. Ngum Nh, Fakeh Nb, Lem Ae, Mamat O. Prevalence Of Malaria And Associated Clinical Manifestations And Myeloperoxidase Amongst Populations Living In Different Altitudes Of Mezam Division, North West Region, Cameroon. Malar J [Internet]. 2023;22(1):1-14. Available From:

Https://Doi.Org/10.1186/S12936-022-04438-6

8. World Health Organization. Guidelines For The Treatment Of Malaria. World Health Organization; 2015. 313 P.
9. Assefa Dg, Zeleke Ed, Molla W, Mengistu N, Sefa A, Mebratu A, Et Al. Safety Of Dihydroartemisinin-Piperaquine Versus Artemether-Lumefantrine For The Treatment Of Uncomplicated Plasmodium Falciparum Malaria Among Children In Africa: A Systematic Review And Meta-Analysis Of Randomized Control Trials. *Malar J*. 2022 Dec 1;21(1).
10. Thi Thu Huyen T, Van Khanh L, Thi Thu Hien B, Thi Lan Dung N, Van Long N, Dang Ton N. Reporting The Impact Of Artemisinin Resistance: Molecular Surveillance Of Pfk13 And Pfexo Mutations In Plasmodium Falciparum In Southern Provinces Of Vietnam. Vol. 21, *Vietnam Journal Of Biotechnology*. 2023.
11. Miotto O, Sekihara M, Tachibana Si, Yamauchi M, Pearson Rd, Amato R, Et Al. Emergence Of Artemisinin-Resistant Plasmodium Falciparum With Kelch13 C580Y Mutations On The Island Of New Guinea. *Plos Pathog*. 2020 Dec 15;16(12):E1009133.
12. World Health Organization. Global Malaria Program: Artemisinin Resistance And Artemisinin-Based Combination Therapy Efficacy. 2018 Dec.
13. World Health Organization. World Malaria Report: 20 Years Of Global Progress And Challenges [Internet]. Vol. Who/Htm/Gm, World Health Organization. 2020. 299 P. Available From: <Https://Www.Who.Int/Publications/I/Item/9789240015791>
14. Nasamu As, Polino Aj, Istvan Es, Goldberg De. Malaria Parasite Plasmeepsins: More Than Just Plain Old Degradative Pepsins. *Journal Of Biological Chemistry*. 2020 Jun;295(25):8425-41.
15. Prakash Sharma P, Sethi A, Diwedi B, Grishina M, Rathi B, Singh G. Novel Inhibitors Of Malaria Aspartyl Proteases, Plasmeepsin Ii And Iv: In Silico Design And Validation Studies. *Chemical Biology Letters Chem Biol Lett [Internet]*. 2022;9(1):315-25. Available From: <Http://Thesciencein.Org/Cbl>
16. Prawesty Diah Utami, Febrianti Zpf. In Vitro Study: Antimalarial Activity Of Rivet Sea Cucumber Extract (*Holothuria Atra*) With Ethyl Acetate Solvent Against Plasmodium Falciparum. *Wmj (Warmadewa Medical Journal)*. 2022 May 31;7(1):23-32.
17. Dakrory Ai, Fahmy Sr, Soliman Am, Mohamed As, Amer Sam. Protective And Curative Effects Of The Sea Cucumber *Holothuria Atra* Extract Against DMBA-Induced Hepatorenal Diseases In Rats. *Biomed Res Int*. 2015;2015:1-11.
18. Hossain A, Dave D, Shahidi F. Antioxidant Potential Of Sea Cucumbers And Their Beneficial Effects On Human Health. *Mar Drugs*. 2022 Aug 15;20(8):521.
19. Al-Mohaya M, Mesut B, Kurt A, Çelik Ys. In Silico Approaches Which Are Used In Pharmacy. *J Appl Pharm Sci*. 2024;
20. Moelyadi F, Utami Pd, Dikman Im. Inhibitory Effect Of Active Substances Of Lollyfish (*Holothuria Atra*) Against The Development Of Plasmodium Falciparum Based On In Silico Study. *Ilmu Kelaut*. 2020;25(4):135-42.
21. The National Center For Biotechnology Information. National Institute Of Health. 2024 [Cited 2025 May 13]. *Explore Chemistry*. Available From: <Https://Pubchem.Ncbi.Nlm.Nih.Gov/>
22. RCSB PDB. RCSB Organization. 2024 [Cited 2025 May 13]. Protein Data Bank. Available From: <Https://Www.Rcsb.Org/>
23. Poroikov V V. Computer-Aided Drug Design: From Discovery Of Novel Pharmaceutical Agents To Systems Pharmacology. *Biochem Mosc Suppl*

B Biomed Chem. 2020 Jul 17;14 (3):216–27.

24. Hassan Ss Ul, Abbas Sq, Ali F, Ishaq M, Bano I, Hassan M, Et Al. A Comprehensive In Silico Exploration Of Pharmacological Properties, Bioactivities, Molecular Docking, And Anticancer Potential Of Vieloplain F From Xylopia Vielana Targeting B-Raf Kinase. Molecules. 2022 Jan 28;27(3):917.

25. Shahin R, Jaafreh S, Azzam Y. Tracking Protein Kinase Targeting Advances: Integrating Qsar Into Machine Learning For Kinase-Targeted Drug Discovery. Future Sci Oa. 2025 Dec 31;11(1).

26. Chaniad P, Mungthin M, Payaka A, Viriyavejakul P, Punsawad C. Antimalarial Properties And Molecular Docking Analysis Of Compounds From Dioscorea Bulbifera L. As New Antimalarial Agent Candidates. Bmc Complement Med Ther. 2021 Dec 18;21(1):144.

27. Lalu Sanik Wahyu Fadil Amrulloh, Nuraini Harmastuti, Andri Prasetyo, Rina Herowati. Analysis Of Molecular Docking And Dynamics Simulation Of Mahogany (*Swietenia Macrophylla* King) Compounds Against The Plpro Enzyme Sars-Cov-2. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia. 2023 Dec 21;10(3):347–59.

28. Anggraeni Vj, Purwaniati P, Budiana W, Nurdin T. Molecular Docking Compounds In Methanol Extract Of Mango Leaves (*Mangifera Indica* L.) As Anti-Inflammatory Agent. Vol. 7, Jurnal Kimia Riset. 2022.

29. Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, Et Al. Admetlab 3.0: An Updated Comprehensive Online Admet Prediction Platform Enhanced With Broader Coverage, Improved Performance, Api Functionality, And Decision Support. Nucleic Acids Res. 2024 Jul 5;52(W1):W422–31.

30. Banerjee P, Eckert Ao, Schrey Ak, Preissner R. Protox-II: A Webserver For The Prediction Of Toxicity Of Chemicals. Nucleic Acids Res. 2018 Jul 2;46(W1):W257–63.

31. Yeni Y, Rachmania Ra. Toxicity Of Anti-Inflammatory Substances In *Hemigraphis Alternata* Leaves: In Silico Study Using Protox-II. Jurnal Sains Dan Kesehatan. 2023 Oct 30;5 (5):810–5.

32. Mohamed Ss, Bensaber Sm, Meiqal Nh, Hermann A, Gbaj Am, Author C, Et Al. Design And In-Silico Evaluation Of Pyridine-4-Carbohydrazide Derivatives For Potential Therapeutic Applications. 2025; Available From: [Www.Auctoresonline.Org](http://www.auctoresonline.org)

33. Correction To: Prediction Of Protein–Ligand Binding Affinity Via Deep Learning Models. Brief Bioinform. 2024 May 23;25(4).

34. Ahmed A, Mam B, Sowdhamini R. Deelig: A Deep Learning Approach To Predict Protein-Ligand Binding Affinity. Bioinform Biol Insights. 2021 Jan 7;15.

35. Prasad R, Prasad SB. A Review On The Chemistry And Biological Properties Of Rutin, A Promising Nutraceutical Agent. Asian J Pharm Pharmacol. 2019 Jun;5(S1):1–20.

36. Ganesh D, Fuehrer Hp, Starzengrüber P, Swoboda P, Khan Wa, Reismann Jab, Et Al. Antiplasmodial Activity Of Flavonol Quercetin And Its Analogues In *Plasmodium Falciparum*: Evidence From Clinical Isolates In Bangladesh And Standardized Parasite Clones. Parasitol Res. 2012 Jun 4;110(6):2289–95.

37. Al-Rimawi F, Akkawi M, Tarayrah H, Abu-Yabes O, Abu-Remeleh Q, Almutairi H, Et Al. In Vitro Analysis Of Antimalarial Activity Of *Achillea Fragrantissima* (Forssk.) Sch.Bip Extracts Based On Beta-Hematin Formation. Nat Prod Commun. 2024 Apr 2;19(4).

38. Roychoudhury S, Sinha B, Choudhury Bp, Jha Nk, Palit P, Kundu S, Et Al. Scavenging Properties Of Plant-Derived Natural Biomolecule Para-Coumaric Acid In The Prevention Of Oxidative Stress-Induced Diseases. Antioxidants. 2021 Jul 28;10

(8):1205.

39. Moelyadi F, Utami P, Dikman Im. Inhibitory Effect Of Active Substances Of Lollyfish (*Holothuria Atra*) Against The Development Of Plasmodium Falciparum Based On In Silico Study. Ilmu Kelaut [Internet]. 2020;25:135–42. Available From: <Https://Pdfs.Semanticscholar.Org/1d16/Ad95f3d24be0db9157395c91cc1d6dcad5fe.Pdf>

40. Sheng Y, Sun Y, Tang Y, Yu Y, Wang J, Zheng F, Et Al. Catechins: Protective Mechanism Of Antioxidant Stress In Atherosclerosis. *Front Pharmacol*. 2023 Mar 24;14.

41. Kemal T, Feyisa K, Bisrat D, Asres K. In Vivo Antimalarial Activity Of The Leaf Extract Of *Osyris Quadripartita* Salzm. Ex Decne And Its Major Compound (–) Catechin. *J Trop Med*. 2022 Oct 7;2022:1-7.

42. Abu-Lafi S, Akkawi M, Al-Rimawi F, Abu-Remeleh Q, Lutgen P. Morin, Quercetin, Catechin, And Quercitrin As Novel Natural Antimalarial Candidates. *Pharm Pharmacol Int J*. 2020 Jun 25;8(3):184–90.

43. Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review On The Biological Functions, Mechanistic Actions, And Therapeutic Potentials. *Nutrients*. 2024 Mar 23;16(7):924.

44. Shinyuy Lm, Loe Ge, Jansen O, Ledoux A, Palmaerts B, Mamede L, Et Al. Exploring The Phytochemical Diversity And Anti-Plasmodial Potential Of *Artemisia Annua* And *Artemisia Afra* From Different Geographical Locations In Cameroon. *Molecules*. 2025 Jan 28;30(3):596.

45. Njus D, Kelley Pm, Tu Yj, Schlegel Hb. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. *Free Radic Biol Med*. 2020 Nov;159:37–43.

46. Aghayere Ge, Okeri Ha. Effect Of Ascorbic Acid On Pharmacokinetic Profile Of Artemether In Male Rabbits (*Oryctolagus Cuniculus*). *Journal Of Applied Sciences And Environmental Management*. 2023 Sep 3;27 (8):1753–60.

47. Habib Mdr, Igarashi Y, Zhou T, Aziz Mda. Pyrogallol Is A Key Component For Xanthine Oxidase Inhibition By The Leaves Of *Ammannia baccifera*. *Journal Of Drug Delivery And Therapeutics*. 2023 Mar 15;13(3):113–9.

48. Nur Fadilah Aw, Utami Pd, Pranitasari N. Inhibitory Activity Of Bioactive Compounds In Black Sea Cucumber (*Holothuria Atra*) Against Falcipain-2 Protein In Plasmodium Falciparum As Antimalaria Based On In Silico Study. *Jurnal Kedokteran Diponegoro (Diponegoro Medical Journal)*. 2025 May 1;14(3):136–45.

49. Ja’afar Nsa, Nik Mat Zin Nni, Mohamad Fs, Abu-Bakar N. A Polyphenol, Pyrogallol, Changes The Acidic Ph Of The Digestive Vacuole Of Plasmodium Falciparum. *Life Sciences, Medicine, And Biomedicine*. 2021 Aug 2;5(1).

50. Nhlapho S, Nyathi M, Ngwenya B, Dube T, Telukdarie A, Munien I, Et Al. Druggability Of Pharmaceutical Compounds Using Lipinski Rules With Machine Learning. *Sciences Of Pharmacy [Internet]*. 2024 Nov 11;3 (4):177–92. Available From: <Https://Etfli.Com/Article/264>

51. Currie Gm. Pharmacology, Part 2: Introduction To Pharmacokinetics. *J Nucl Med Technol*. 2018 Sep;46 (3):221–30.

52. Kishida K, Matsumoto H. Urinary Excretion Rate And Bioavailability Of Chlorogenic Acid, Caffeic Acid, P-Coumaric Acid, And Ferulic Acid In Non-Fasted Rats Maintained Under Physiological Conditions. *Heliyon*. 2019 Oct;5(10):E02708.

53. Nicolás García M, Borrás Enríquez A, González Escobar J, Calva Cruz O, Pérez Pérez V, Sánchez Becerril M. Phenolic Compounds In Agro-Industrial Waste Of Mango Fruit: Impact On Health And Its Prebiotic Effect – A Review. *Pol J Food Nutr Sci*.

2023 Feb 21;5:23.

54. Björnsson Es. Clinical Management Of Patients With Drug-Induced Liver Injury (Dili). *United European Gastroenterol J.* 2021 Sep 28;9(7):781–6.

55. Alsharari Sd, Al-Rejaie Ss, Abuohashish Hm, Ahmed Mm, Hafez Mm. Rutin Attenuates Hepatotoxicity In High-Cholesterol-Diet-Fed Rats. *Oxid Med Cell Longev.* 2016 Jan 27;2016(1).

56. Gęgotek A, Jarocka-Karpowicz I, Skrzylęwska E. Cytoprotective Effect Of Ascorbic Acid And Rutin Against Oxidative Changes In The Proteome Of Skin Fibroblasts Cultured In A Three-Dimensional System. *Nutrients.* 2020 Apr 13;12 (4):1074.

57. Shanmugam N, Umanath P, Gurusamy V. Protective Effect Of Hesperidin, Ascorbic Acid And Their Combination On Oxidative Stress, Dyslipidemia, And Histological Changes In Antitubercular Drug-Induced Hepatotoxicity In Rats. *Indian J Pharmacol.* 2025 Jan;57(1):4–11.

58. Cavasotto Cn, Scardino V. Machine Learning Toxicity Prediction: Latest Advances By Toxicity End Point. *ACS Omega.* 2022 Dec 27;7 (51):47536–46.

59. Li X, Zhang J, Lin S, Xing Y, Zhang X, Ye M, Et Al. (+)-Catechin, Epicatechin, And Epigallocatechin Gallate Are Important Inducible Defensive Compounds Against *Ectropis Grisescens* In Tea Plants. *Plant Cell Environ.* 2022 Feb 9;45(2):496–511.

60. Kauser S, Mughees M, Swami S, Wajid S. Pre-Clinical Toxicity Assessment Of Artemisia Absinthium Extract-Loaded Polymeric Nanoparticles Associated With Their Oral Administration. *Front Pharmacol.* 2023 Jul 10;14.

61. National Center For Biotechnology Information. Pubchem Compound Summary For Cid 68827, Artemisinin. 2025.

62. Cooney L, Loke Yk, Golder S, Kirkham J, Jorgensen A, Sinha I, Et Al. Overview Of Systematic Reviews Of Therapeutic Ranges: Methodologies And Recommendations For Practice. *Bmc Med Res Methodol.* 2017 Dec 2;17(1):84.

63. Sun D, Gao W, Hu H, Zhou S. Why 90% of Clinical Drug Development Fails and How To Improve It? *Acta Pharm Sin B.* 2022 Jul;12(7):3049–62 .