UJI EKSPERIMENTAL PEREDAM DI HILIR SLUICE GATE UNTUK PENGENDALIAN LONCATAN HIDRAULIK
DOI:
https://doi.org/10.22225/pd.11.2.5312.193-198Keywords:
hydraulic, hydraulic jump, sluice gate, stilling basinAbstract
A hydraulic jump can be formed by the discharge flowing through the sluice gate. This phenomenon occurred due the flow transformation from subcritic to supercritic. The hydraulic jump can cause an erosion in channel base. In this experimental study the stilling basin is planned in sluice gate downstream. The triangular, trapezoid, and sinusoidal stilling basin have been installed to control the flow and the hydraulic jump. The objective of this study is to evaluate the hydraulic jump in the sluice gate downstream, specifically the height and the jump length. This experimental study result can be used as consideration in designing a sluice gate. In this experimental study, comparisons were made on several models such as triangular stilling basin (model 1), trapezoidal stilling basin (model 2), and sinusoidal stilling basin (model 3), with the original design (Model 0). The modelling results were then evaluated by comparing to indicators such as sluice gate opening height (Y1), hydraulic jump height (Y2), and hydraulic jump length (Lj). The experimental study result exhibited that stilling basin in sluice gate downstream can reduce Y2 and Lj. The more roughness the stilling basin, the more effective to control the hydraulic jump. Y2 and Lj decreasing value from first to third experiment, that result also affects the length of transition part for the supercritic to subcritic flow. In this experimental study, the largest Y2 reduction efficiency was obtained on the Model 3, which the originally Y2 value was 0.11 m to 0.075 m. The result from this 31.82% efficiency is obtained 0.16 m of hydraulic jump length (Lj) and stilling basin length requirement (Ld) in 0.38 m.
References
Anonim. (2013). Kriteria Perencanaan Bagian Bangunan Utama KP-02. Standar Perencanaan Irigasi. Kementerian Pekerjaan Umum, Direktorat Jenderal Sumber Daya Air, Direktorat Irigasi dan Rawa.
Abbaspour, A., Parvini, S., & Hosseinzadeh Dalir, A. (2016). Effect Of Buried Plates On Scour Profiles Downstream Of Hydraulic Jump In Open Channels With Horizontal And Reverse Bed Slopes. Water Science and Engineering, 9(4), 329–335.
Azmeri, A., Basri, H., Yulianur, A., Ziana, Z., Jemi, F. Z., & Rahmah, R. A. (2021). Hydraulic Jump And Energy Dissipation With Stepped Weir. Journal of Water and Land Development, 51, 56–61.
Binilang, A. (2014). Perilaku Hubungan Antar Parameter Hidrolis Air Loncat Melalui Pintu Sorong Pada Saluran Terbuka. Jurnal Ilmiah Media Engineering, 4(1), 41–44.
Chow, Ven Te. (1985). Hidrolika Saluran Terbuka. Jakarta: Penerbit Airlangga.
El-Seddik, M. M. (2017). Annals Of Civil And Environmental Engineering Hydraulic Jump Experiment In A Rectangular Open Channel Flume. Annals of Civil and Environmental Engineering, 1, 42–48.
Fahmiahsan, R., Mudjiatko, & Rinaldi. (2018). Fenomena Hidrolis Pada Pintu Sorong. Jurnal Fakultas Teknik, 5(1), 1–10.
Imran, H. M., & Akib, S. (2013). A Review Of Hydraulic Jump Properties In Different Channel Bed Conditions. Life Science Journal, 10(2), 126–130.
Kim, Y., Choi, G., Park, H., & Byeon, S. (2015). Hydraulic Jump And Energy Dissipation With Sluice Gate. Water (Switzerland), 7(9), 5115–5133.
Kodoatie, R J. (2005). Hidrolika Terapan Aliran Pada Saluran Terbuka dan Pipa. Yogyakarta: Penerbit Andi.
Laksitaningtyas, A. P., Legono, D., & Yulistiyanto, B. (2020). Karakteristik Kecepatan Aliran Di Dekat Dasar Pintu Peluapan Bawah (Sluice Gate). Jurnal Teknik Pengairan, 11(1), 61–72.
Fathi-Moghadam, M., Haghighipour, S., Lashkar-Ara, B., & Aghtouman, P. (2011). Reduction of stilling basin length with tall end sill. Journal of Hydrodynamic, 23(4), 498-502.
Nenny, & Imran, H. (2018). Studi Eksperimen Model Peredam Energi Terhadap Loncatan Hidrolik Pada Kolam Olakan. Jurnal Ilmiah Techno Entrepeneur Acta, 3(1), 21–28.
Nurjanah, D. (2014). Analisis Tinggi Dan Panjang Loncat Air Pada Bangunan Ukur Berbentuk Setengah Lingkaran. Jurnal Teknik Sipil Dan Lingkungan, 2(3), 578–582.
Nurnawaty, Rakhim, A., Safitri, M., & Muhaemina. (2021). Loncatan Hidrolik Pada Hilir Pintu Sorong Dengan dan Tanpa Ambang Akibat Variasi Tinggi Bukaan Pintu. Jurnal Teknik Hidro, 14(1), 1–7.
Rafelia, A., Kamiana, I. M., & Nindito, D. A. (2021). Pengaruh Pemasangan Model Tiang Berbahan Bambu Kuning Di Hilir Pintu Air Terhadap Energi Spesifik. Jurnal Kacapuri : Jurnal Keilmuan Teknik Sipil, 4(1), 306.
Subramanya, K. (1986). Flow in Open Channel. New Delhi: Tata McGraw-Hill Publishing Company Limited.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





