UJI EKSPERIMENTAL PEREDAM DI HILIR SLUICE GATE UNTUK PENGENDALIAN LONCATAN HIDRAULIK

Authors

  • Dyan Eka Nurhayati Institut Teknologi Adhi Tama Surabaya, Jawa Timur, Indonesia
  • Syamsuri Institut Teknologi Adhi Tama Surabaya, Jawa Timur, Indonesia

DOI:

https://doi.org/10.22225/pd.11.2.5312.193-198

Keywords:

hydraulic, hydraulic jump, sluice gate, stilling basin

Abstract

A hydraulic jump can be formed by the discharge flowing through the sluice gate. This phenomenon occurred due the flow transformation from subcritic to supercritic. The hydraulic jump can cause an erosion in channel base. In this experimental study the stilling basin is planned in sluice gate downstream. The triangular, trapezoid, and sinusoidal stilling basin have been installed to control the flow and the hydraulic jump. The objective of this study is to evaluate the hydraulic jump in the sluice gate downstream, specifically the height and the jump length. This experimental study result can be used as consideration in designing a sluice gate. In this experimental study, comparisons were made on several models such as triangular stilling basin (model 1), trapezoidal stilling basin (model 2), and sinusoidal stilling basin (model 3), with the original design (Model 0). The modelling results were then evaluated by comparing to indicators such as sluice gate opening height (Y1), hydraulic jump height (Y2), and hydraulic jump length (Lj). The experimental study result exhibited that stilling basin in sluice gate downstream can reduce Y2 and Lj. The more roughness the stilling basin, the more effective to control the hydraulic jump. Y2 and Lj decreasing value from first to third experiment, that result also affects the length of transition part for the supercritic to subcritic flow. In this experimental study, the largest Y2 reduction efficiency was obtained on the Model 3, which the originally Y2 value was 0.11 m to 0.075 m. The result from this 31.82% efficiency is obtained 0.16 m of hydraulic jump length (Lj) and stilling basin length requirement (Ld) in 0.38 m.

References

Anonim. (2013). Kriteria Perencanaan Bagian Bangunan Utama KP-02. Standar Perencanaan Irigasi. Kementerian Pekerjaan Umum, Direktorat Jenderal Sumber Daya Air, Direktorat Irigasi dan Rawa.

Abbaspour, A., Parvini, S., & Hosseinzadeh Dalir, A. (2016). Effect Of Buried Plates On Scour Profiles Downstream Of Hydraulic Jump In Open Channels With Horizontal And Reverse Bed Slopes. Water Science and Engineering, 9(4), 329–335.

Azmeri, A., Basri, H., Yulianur, A., Ziana, Z., Jemi, F. Z., & Rahmah, R. A. (2021). Hydraulic Jump And Energy Dissipation With Stepped Weir. Journal of Water and Land Development, 51, 56–61.

Binilang, A. (2014). Perilaku Hubungan Antar Parameter Hidrolis Air Loncat Melalui Pintu Sorong Pada Saluran Terbuka. Jurnal Ilmiah Media Engineering, 4(1), 41–44.

Chow, Ven Te. (1985). Hidrolika Saluran Terbuka. Jakarta: Penerbit Airlangga.

El-Seddik, M. M. (2017). Annals Of Civil And Environmental Engineering Hydraulic Jump Experiment In A Rectangular Open Channel Flume. Annals of Civil and Environmental Engineering, 1, 42–48.

Fahmiahsan, R., Mudjiatko, & Rinaldi. (2018). Fenomena Hidrolis Pada Pintu Sorong. Jurnal Fakultas Teknik, 5(1), 1–10.

Imran, H. M., & Akib, S. (2013). A Review Of Hydraulic Jump Properties In Different Channel Bed Conditions. Life Science Journal, 10(2), 126–130.

Kim, Y., Choi, G., Park, H., & Byeon, S. (2015). Hydraulic Jump And Energy Dissipation With Sluice Gate. Water (Switzerland), 7(9), 5115–5133.

Kodoatie, R J. (2005). Hidrolika Terapan Aliran Pada Saluran Terbuka dan Pipa. Yogyakarta: Penerbit Andi.

Laksitaningtyas, A. P., Legono, D., & Yulistiyanto, B. (2020). Karakteristik Kecepatan Aliran Di Dekat Dasar Pintu Peluapan Bawah (Sluice Gate). Jurnal Teknik Pengairan, 11(1), 61–72.

Fathi-Moghadam, M., Haghighipour, S., Lashkar-Ara, B., & Aghtouman, P. (2011). Reduction of stilling basin length with tall end sill. Journal of Hydrodynamic, 23(4), 498-502.

Nenny, & Imran, H. (2018). Studi Eksperimen Model Peredam Energi Terhadap Loncatan Hidrolik Pada Kolam Olakan. Jurnal Ilmiah Techno Entrepeneur Acta, 3(1), 21–28.

Nurjanah, D. (2014). Analisis Tinggi Dan Panjang Loncat Air Pada Bangunan Ukur Berbentuk Setengah Lingkaran. Jurnal Teknik Sipil Dan Lingkungan, 2(3), 578–582.

Nurnawaty, Rakhim, A., Safitri, M., & Muhaemina. (2021). Loncatan Hidrolik Pada Hilir Pintu Sorong Dengan dan Tanpa Ambang Akibat Variasi Tinggi Bukaan Pintu. Jurnal Teknik Hidro, 14(1), 1–7.

Rafelia, A., Kamiana, I. M., & Nindito, D. A. (2021). Pengaruh Pemasangan Model Tiang Berbahan Bambu Kuning Di Hilir Pintu Air Terhadap Energi Spesifik. Jurnal Kacapuri : Jurnal Keilmuan Teknik Sipil, 4(1), 306.

Subramanya, K. (1986). Flow in Open Channel. New Delhi: Tata McGraw-Hill Publishing Company Limited.

Downloads

Published

2022-11-19

Issue

Section

Articles