Mechanical properties of asbestos and basalt stone waste as structural concrete

Authors

  • Ni Putu Indira Saraswati Kumari Wisuryha Civil Engineering, Udayana University, Badung, Bali, Indonesia
  • Putu Cinthya Pratiwi Kardita Civil Engineering, Udayana University, Badung, Bali, Indonesia https://orcid.org/0009-0007-5361-2720
  • I Made Agus Ariawan Civil Engineering, Udayana University, Badung, Bali, Indonesia https://orcid.org/0009-0000-2446-4924
  • Ida Ayu Made Dwitya Widani Manuaba Civil Engineering, Udayana University, Badung, Bali, Indonesia
  • I Dewa Gede Byantara Nugraha Civil Engineering, Udayana University, Badung, Bali, Indonesia
  • Abbror Ragil Putrawan Civil Engineering, Udayana University, Badung, Bali, Indonesia

DOI:

https://doi.org/10.22225/pd.14.2.13982.305-311

Keywords:

asbestos waste, basalt stone, CO2 emissions, high performance concrete, structural concrete

Abstract

The Earth's average surface temperature has increased immensely, reaching 1.45 +/- 0.12 Celsius in 2023. This is linked to growing carbon emissions from industrial activities, particularly the construction sector. The production of 1 m3 of conventional concrete can emit up to 277.82 kg CO2. Indonesia remains the second-largest asbestos importer, contributing over 100,000 tons annually to the local construction sector in 2023. Most of the waste is unmanaged and causes health concerns. Simultaneously, Bali’s stone carving industry generates approximately 30% basalt stone waste, much of which remains unprocessed and is discarded into rivers or roadside drains. Nationally, Indonesia holds over 1 billion tons of basalt reserves, yet utilization remains low. Addressing these dual environmental issues, this study proposes a sustainable concrete innovation that utilizes 3% asbestos waste as a substitute for cement and 20% basalt waste as a replacement for coarse aggregate. The proposed concrete mix was tested following SNI 03-2847-2002, ASTM C39, and SNI 03-1974-1990. The results show a compressive strength of 44.26 MPa, higher than the required 41.4 MPa for high-strength concrete based on SNI 03-6468-2000. The modified mixture also has a 16.71 percent lower density than normal concrete and a slump value of 157.67 mm, indicating good workability. Furthermore, the mix reduces carbon emissions by 31.273 kg CO2 per m3 and lowers production cost by 43.9 percent, saving IDR 731,401 compared to conventional concrete with similar strength. These innovations show that asbestos and basalt waste can be transformed into low-carbon structural materials, promoting the circular economy while mitigating environmental risks from unmanaged industrial waste.

References

Alzboon, K. K., & Mahasneh, K. N. (2023). Environmental impact of stone cutting sludge and its utilization in concrete production. Jordan Journal of Civil Engineering, 17(1).

Badan Standardisasi Nasional. (1990a). SNI 03-1969-1990 Metode Pengujian Berat Jenis dan Penyerapan Air Agregat Kasar. Badan Standardisasi Nasional.

Badan Standardisasi Nasional. (1990b). SNI 03-1971-1990Metode pengujian kadar air agregat.

Badan Standardisasi Nasional. (1990c). SNI 03-1974-1990 Metode pengujian kuat tekan beton.

Badan Standardisasi Nasional. (2000a). SNI 03-2834-2000 Tata cara pembuatan rencana campuran beton normal

Badan Standardisasi Nasional. (2000b). SNI 03-6468-2000: Tata Cara Perencanaan Campuran Tinggi dengan Semen Portland dengan Abuterbang.

Badan Standardisasi Nasional. (2002). SNI 03-2847-2002 Tata Cara Perhitungan Struktur Beton untuk Bangunan Gedung. Badan Standardisasi Nasional.

Choi, H.-B., Park, J.-O., Kim, T.-H., & Lee, K.-R. (2021). Mechanical Properties of Basalt-Based Recycled Aggregate Concrete for Jeju Island. Materials, 14(18), 5429. https://doi.org/10.3390/ma14185429

Durczak, K., Pyzalski, M., Brylewski, T., Juszczyk, M., Lesniak, A., Libura, M., Ustinovicius, L., & Vaisnoras, M. (2024). Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability, 16(20), 8798. https://doi.org/10.3390/su16208798

Durczak, K., Pyzalski, M., Sujak, A., Juszczyk, M., Sala, D., & Ustinovichius, L. (2024). Efficient Management of Asbestos Waste Through Utilization as Mineral Additives in Portland Cement Production. Materials, 17(23), 5793. https://doi.org/10.3390/ma17235793

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., … Zheng, B. (2023). Global Carbon Budget 2023. Earth System Science Data, 15(12), 5301–5369. https://doi.org/10.5194/essd-15-5301-2023

Jain, A. (2023). Sustainable construction for SDG 11: A review of waste utilization in cementitious materials. Journal of Building Engineering, 76. https://doi.org/10.1016/j.jobe.2023.107156

Madlool, N. A., Saidur, R., Hossain, M. S., & Rahim, N. A. (2011). A critical review on energy use and savings in the cement industries. Renewable and Sustainable Energy Reviews, 15(4), 2042–2060. https://doi.org/10.1016/j.rser.2011.01.005

Nachimuthu, B., Viswanathan, R., Subramaniyan, Y., & Baskaran, J. (2024). Mechanical properties of recycled concrete aggregates with superplasticizer. Materia (Rio de Janeiro), 29(2). https://doi.org/10.1590/1517-7076-rmat-2023-0382

NASA Goddard Institute for Space Studies. (2024). Global Temperature Report 2023. NASA GISS.

Opoku, A. (2024). The contribution of the construction industry to the Sustainable Development Goals (SDGs). Built Environment Project and Asset Management., 4(1).

Oztas, A., & Tunc, H. (2024). Carbon footprint of global construction industries: A cross-country analysis (1990–2023). Sustainability, 16(20).

Paolini, V. (2022). Asbestos containing materials: Management strategies and valorization into new inert products. Journal of Environmental Management, 320.

Patowary, F., & Siddique, S. (2023). Influence of superplasticizer type and dosage on the rheology of recycled aggregate concrete. Construction and Building Materials, 368.

Sharaky, I. A., Elamary, A. S., & Alharthi, Y. M. (2022). Effect of Waste Basalt Fines and Recycled Concrete Components on Mechanical, Water Absorption, and Microstructure Characteristics of Concrete. Materials, 15(13), 4385. https://doi.org/10.3390/ma15134385

Silva, R. V. (2023). Investigating ornamental stone waste as a green supplementary cementitious material in Portland cement mortars. Construction and Building Materials, 392.

Tang, Z. (2024). Synergistic utilization of multiple solid wastes in high-performance concrete: A review. Journal of Cleaner Production, 434.

UNEP. (2024). Global Status Report for Buildings and Construction 2024. United Nations Environment Programme.

Wang, C.-I., Cho, Y.-C., & Lin, Y.-P. (2025). Detoxification of asbestos-containing waste using thermal-chemical treatment for cement production. Environmental Technology & Innovation, 40, 104437. https://doi.org/10.1016/j.eti.2025.104437

Zhu, J. (2023). Decarbonizing cement: The role of supplementary cementitious materials and carbon capture. Engineering, 25, 12–24.

Downloads

Published

2026-01-04

Issue

Section

Articles