Analisis dan simulasi debit banjir dengan variasi koefisien limpasan menggunakan HEC-RAS

Authors

  • Ade Tricia Miranda Departemen Teknik Sipil Universitas Muhammadiyah Palembang, Palembang, Sumatera Selatan, Indonesia

Keywords:

flood, land use, runoff coefficient

Abstract

Floods have a damaging impact on at-risk areas such as areas with relatively high land cover, especially after heavy rains. Land cover is the influence of land use. In land use, the runoff coefficient (C) is a factor that greatly affects the amount of water runoff that occurs during and after rain. The runoff coefficient (C) describes how large the proportion of rainwater that will flow as surface runoff compared to the water that seeps into the soil, so, the closer the coefficient value is closer to the value of 1, the more an area is unable to absorb water, as well as if the runoff coefficient (C) is closer to 0, the more an area can absorb water well. The runoff coefficient (C) has a high correlation with land use. In this study, the variation of runoff coefficient (C) will be simulated on rainfall and area using rational equations and then the results are simulated using HEC-RAS. The variation in runoff coefficient (C) was simulated with the criteria conditions of cultivated land, clay & silt loam soils (C= 0.4) and regional conditions when only able to overflow water or unable to absorb (C= 1). The results were found that the runoff coefficient (C) affects the area and depth of flooding in the study area. At C = 0.4 the maximum flood depth is 2.99 meters in the upstream part of the river and 1.65 meters downstream, while when C = 1, the maximum flood depth is 2.03 meters in the upstream part and 1.1 meters in the downstream part. In this case, it is important to prepare rainwater reservoirs in areas with relatively high land cover or runoff coefficient (C).

References

Akumu, C. E., Amadi, E. O., & Dennis, S. (2021). Application of drone and worldview-4 satellite data in mapping and monitoring grazing land cover and pasture quality: Pre-and post-flooding. Land, 10(3). https://doi.org/10.3390/land10030321

Alharbi, T. (2023). Mapping of Groundwater, Flood, and Drought Potential Zones in Neom, Saudi Arabia, Using GIS and Remote Sensing Techniques. Water (Switzerland), 15(5). https://doi.org/10.3390/w15050966

Andrianto, R., Irawan, F., Purnomo, N., & Rahayu Putri, P. B. (2023). Backpropagation Method To Predict Rainfall Levels In Rokan Hulu District. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 9(3), 409–418. https://doi.org/10.33330/jurteksi.v9i3.2263

Commey, N. A., Magome, J., Ishidaira, H., & Souma, K. (2023). Catchment-Scale Land Use and Land Cover Change Analysis in Two Coastal Ramsar Sites in Ghana, Using Remote Sensing. Water (Switzerland), 15(20), 1–21. https://doi.org/10.3390/w15203568

Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., & Petaccia, G. (2020). Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water (Switzerland), 12(9), 1–19. https://doi.org/10.3390/W12092326

Desalegn, H., & Mulu, A. (2021). Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River, Upper Abbay Basin, Ethiopia. Scientific African, 12, e00834. https://doi.org/10.1016/j.sciaf.2021.e00834

Dixit, A., Sahany, S., Rajagopalan, B., & Choubey, S. (2022). Role of changing land use and land cover (LULC) on the 2018 megafloods over Kerala, India. Climate Research, 89(Ipcc 2007), 1–14. https://doi.org/10.3354/cr01701

Hasan, M. M., Mondol Nilay, M. S., Jibon, N. H., & Rahman, R. M. (2023). LULC changes to riverine flooding: A case study on the Jamuna River, Bangladesh using the multilayer perceptron model. Results in Engineering, 18(April), 101079. https://doi.org/10.1016/j.rineng.2023.101079

Junaedi, J. (2021). Pengaruh Curah Hujan Terhadap Produksi Kelapa Sawit Pada Berbagai Umur Tanaman. Agroplantae: Jurnal Ilmiah Terapan Budidaya Dan Pengelolaan Tanaman Pertanian Dan Perkebunan, 10(2), 114–123. https://doi.org/10.51978/agro.v10i2.290

Khairani, S. K., Apriniyadi, M., & Adimas, M. (2022). Analisis Laju Infiltrasi Terhadap Curah Hujan Daerah Gunung Pancar, Bogor, Jawa Barat: Analysis of Infiltration Rate of Rainfall …. Journal of Geoscience …, III. https://www.e-journal.trisakti.ac.id/index.php/jogee/article/view/12954%0Ahttps://www.e-journal.trisakti.ac.id/index.php/jogee/article/download/12954/7605

Kumar, V., Sharma, K. V., Caloiero, T., Mehta, D. J., & Singh, K. (2023). Comprehensive Overview of Flood Modeling Approaches: A Review of Recent Advances. Hydrology, 10(7). https://doi.org/10.3390/hydrology10070141

Ma, Y., Cui, Y., Tan, H., & Wang, H. (2022). Case study: Diagnosing China’s prevailing urban flooding—Causes, challenges, and solutions. Journal of Flood Risk Management, 15(3), 1–13. https://doi.org/10.1111/jfr3.12822

Manzoor, Z., Ehsan, M., Khan, M. B., Manzoor, A., Akhter, M. M., Sohail, M. T., Hussain, A., Shafi, A., Abu-Alam, T., & Abioui, M. (2022). Floods and flood management and its socio-economic impact on Pakistan: A review of the empirical literature. Frontiers in Environmental Science, 10(December), 1–14. https://doi.org/10.3389/fenvs.2022.1021862

Miranda, A. T., Dwi, D., Putranto, A., & Gunawan, T. A. (2025). Flood And Inundation Risk Analysis Due To Potential Land Subsidence On Alluvial Plains. 28.

Miranda, A. T., Gunawan, T. A., & Juliana, I. C. (2023). Analysis of flood control in Lambidaro sub-watershed using EPA SWMM. International Journal of Life Sciences & Earth Sciences, 6(1), 1–18. https://doi.org/10.21744/ijle.v6n1.2068

Munawar, H. S., Hammad, A. W. A., & Waller, S. T. (2022). Remote Sensing Methods for Flood Prediction: A Review. Sensors, 22(3). https://doi.org/10.3390/s22030960

Nanditha, J. S., Kushwaha, A. P., Singh, R., Malik, I., Solanki, H., Chuphal, D. S., Dangar, S., Mahto, S. S., Vegad, U., & Mishra, V. (2023). The Pakistan Flood of August 2022: Causes and Implications. Earth’s Future, 11(3). https://doi.org/10.1029/2022EF003230

Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Applied Water Science, 12(12), 1–21. https://doi.org/10.1007/s13201-022-01772-7

Osman, S. A., & Das, J. (2023). GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Applied Sciences, 5(5). https://doi.org/10.1007/s42452-023-05360-5

Peskett, L. M., Heal, K. V., MacDonald, A. M., Black, A. R., & McDonnell, J. J. (2023). Land cover influence on catchment scale subsurface water storage investigated by multiple methods: Implications for UK Natural Flood Management. Journal of Hydrology: Regional Studies, 47, 101398. https://doi.org/10.1016/j.ejrh.2023.101398

Phinyoyang, A., & Ongsomwang, S. (2021). Optimizing land use and land cover allocation for flood mitigation using land use change and hydrological models with goal programming, chaiyaphum, Thailand. Land, 10(12). https://doi.org/10.3390/land10121317

Samarasinghe, J. T., Makumbura, R. K., Wickramarachchi, C., Sirisena, J., Gunathilake, M. B., Muttil, N., Teo, F. Y., & Rathnayake, U. (2022). The Assessment of Climate Change Impacts and Land-use Changes on Flood Characteristics: The Case Study of the Kelani River Basin, Sri Lanka. Hydrology, 9(10), 1–18. https://doi.org/10.3390/hydrology9100177

Shin, J.-H., Nam, W.-H., Kim, H.-Y., Yang, M.-H., & Jung, I.-K. (2022). Application of EPA-SWMM with Modulated Controls for Agricultural Water Balance Analysis. Journal of the Korean Society of Hazard Mitigation, 22(3), 37–44. https://doi.org/10.9798/kosham.2022.22.3.37

Shukla, S., Meshesha, T. W., Sen, I. S., Bol, R., Bogena, H., & Wang, J. (2023). Assessing Impacts of Land Use and Land Cover (LULC) Change on Stream Flow and Runoff in Rur Basin, Germany. Sustainability, 15(12), 1–24. https://doi.org/10.3390/su15129811

Teshome Nigatu, G., Abebe, B. A., Grum, B., Kebedew, M. G., & Semane, E. M. (2023). Investigation of flood incidence causes and mitigation: Case study of Ribb river, northwestern Ethiopia. Natural Hazards Research, 3(3), 408–419. https://doi.org/10.1016/j.nhres.2023.04.009

Vitale, C., Meijerink, S., & Moccia, F. D. (2023). Urban flood resilience, a multi-level institutional analysis of planning practices in the Metropolitan City of Naples. Journal of Environmental Planning and Management, 66(4), 813–835. https://doi.org/10.1080/09640568.2021.2006156

Wang, L., Cui, S., Li, Y., Huang, H., Manandhar, B., Nitivattananon, V., Fang, X., & Huang, W. (2022). A review of the flood management: from flood control to flood resilience. Heliyon, 8(11), e11763. https://doi.org/10.1016/j.heliyon.2022.e11763

Wudineh, F. A. (2023). Land-use and land-cover change and its impact on flood hazard occurrence in Wabi Shebele River Basin of Ethiopia. Hydrology Research, 54(6), 756–769. https://doi.org/10.2166/nh.2023.121

Yulianto, F., Khomarudin, M. R., Hermawan, E., Nugroho, N. P., Chulafak, G. A., Nugroho, G., Nugroho, U. C., Suwarsono, Fitriana, H. L., & Priyanto, E. (2022). Spatial and temporal distribution of estimated surface runoff caused by land use/land cover changes in the upstream Citarum watershed, West Java, Indonesia. Journal of Degraded and Mining Lands Management, 9(2), 3293–3305. https://doi.org/10.15243/jdmlm.2022.092.3293

Zhang, D., Shen, J., Liu, P., & Sun, F. (2020). Allocation of flood drainage rights based on the psr model and pythagoras fuzzy topsis method. International Journal of Environmental Research and Public Health, 17(16), 1–19. https://doi.org/10.3390/ijerph17165821

Downloads

Published

2026-01-04

Issue

Section

Articles