Pemetaan batimetri dan pemodelan morfologi dasar danau serta analisa daya tampung genangan Danau Patenggang
DOI:
https://doi.org/10.22225/pd.14.1.10176.76-86Keywords:
bathymetry, GIS, lake morphology, Patenggang LakeAbstract
This research aims to map the bathymetry and model the bottom morphology of Patenggang Lake and analyze the lake's inundation capacity. This mapping is important because detailed spatial and morphometric data is not yet available as a basis for planning the management and sustainable use of water resources in the area. The research was conducted through mechanical depth measurement, using a measuring stick for shallow areas and a weighted measuring tape for the middle of the lake. The depth data collected was then processed using the topo to raster interpolation method in ArcGIS software to produce a hydrologically accurate digital elevation model (DEM). The DEM became the basis for analyzing the shape and topographic structure of the lake bed. The results show that Patenggang Lake has a basic morphology in the form of a bowl-like basin, with a maximum depth of 12.5 meters in the northwest and a minimum depth of 3 meters in the northeast. The topographic characteristics of the bottom vary: the northwest is relatively gentle, the northeast is moderately gentle, the southeast is moderately steep, and the northwest is very steep. The storage capacity analysis showed that the surface area and water volume increased linearly with elevation, but at different rates of increase. These main results show that elevation changes greatly affect the lake's storage capacity and have implications for the stability of its hydrological functions. This research provides scientific contributions in the form of basic morphometric data and the latest bathymetry model that can be used in lake ecosystem management. Practically, these results can serve as the basis for technical planning of Lake Patenggang water resources management, especially to support conservation, water quality control, irrigation, and development of tourism potential based on accurate spatial data.
References
Akbar, R. T. M., Setiyowati, Y., Widiana, A., & Cahyanto, T. (2022). Keanekaragaman dan Kelimpahan Makrozoobentos Sebagai Bioindikator Kualitas Air di Situ Patengan, Kabupaten Bandung, Jawa Barat. BIOSAINTROPIS (BIOSCIENCE-TROPIC), 8(1), 74–86. https://doi.org/10.33474/e-jbst.v8i1.509
Al Kautsar, M., Sasmito, B., & Hani’ah, H. (2013). Aplikasi Echosounder Hi-Target Hd 370 Untuk Pemeruman Di Perairan Dangkal (Studi Kasus: Perairan Semarang). Jurnal Geodesi Undip, 2(4), 222–238. https://doi.org/https://doi.org/10.14710/jgundip.2013.3706
Amanta, R., Hasan, Z., & Rosidah. (2012). Struktur Komunitas Plankton Di Situ Patengan Kabupaten Bandung, Jawa Barat. Jurnal Perikanan Dan Kelautan Unpad, 3(3).
Beletsky, D., Hawley, N., Rao, Y. R., Vanderploeg, H. A., Beletsky, R., Schwab, D. J., & Ruberg, S. A. (2012). Summer thermal structure and anticyclonic circulation of Lake Erie. Geophysical Research Letters, 39(6). https://doi.org/10.1029/2012GL051002
Ben-Jemaa, F., Mariño, M. A., & Loaiciga, H. A. (1995). Sampling Design for Contaminant Distribution in Lake Sediments. Journal of Water Resources Planning and Management, 121(1), 71–79. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(71)
BPS. (2024). Jumlah Air Bersih yang Disalurkan Perusahaan Air Bersih 2020-2022. Badan Pusat Statistik Indonesia.
Fazilova, D., & Magdiev, H. (2018). Comparative study of interpolation methods in development of local geoid. International Journal of Geoinformatics , 14(1), 29–33.
Hakanson, L. (2012). A manual of lake morphometry. Springer Science & Business Media.
Kastolani, W. (2016). Chapter The development of mountain tourism based on disaster mitigation in ring of fire areas. Heritage, Culture and Society: Research Agenda and Best Practices in the Hospitality and Tourism Industry.
Khasanov, K. (2020). Evaluation of ASTER DEM and SRTM DEM data for determining the area and volume of the water reservoir. IOP Conference Series: Materials Science and Engineering, 883(1), 012063. https://doi.org/10.1088/1757-899X/883/1/012063
Le, L. C. P., Nguyen, S. H., Nguyen, Q. T., & Pham, Q. B. (2023). Detention lakes and urban flood mitigation problem in Hue Imperial City, Vietnam. Arabian Journal of Geosciences, 16(6), 362. https://doi.org/10.1007/s12517-023-11432-y
Li, Y., Gao, H., Allen, G. H., & Zhang, Z. (2021). Constructing Reservoir Area–Volume–Elevation Curve from TanDEM-X DEM Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 2249–2257. https://doi.org/10.1109/JSTARS.2021.3051103
Martinsen, K. T., Jensen, S. K., & Selvan, R. (2023). Predicting lake bathymetry from the topography of the surrounding terrain using deep learning. Limnology and Oceanography: Methods, 21(10), 625–636. https://doi.org/10.1002/lom3.10573
Moningkey, A. T., Rampengan, M. M. F., Tumengkol, A. A., & Kumaat, J. C. (2022). Study of bathymetry and sedimentation in Tondano Lake. IOP Conference Series: Earth and Environmental Science, 986(1), 012038
Nurcahyanto, A., Krisanti, M., & Kurnia, R. (2023). Biodiveristy of benthic macroinvertebrates family and its relationship with environmental condition in high altitude lake: A case study of Situ Patengan. Habitus Aquatica, 4(1). https://doi.org/10.29244/HAJ.4.1.34
Nygrén, N. A. (2019). Scenario workshops as a tool for participatory planning in a case of lake management. Futures, 107, 29–44. https://doi.org/10.1016/j.futures.2018.10.004
Pamudjianto, A., & Sutiono, W. (2018). Pemanfaatan air danau sebagai sumber air untuk irigasi.
Patterson, T. (1999). Designing 3D Landscapes. In Multimedia Cartography (pp. 217–229). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03784-3_21
Rohman, A., Aryati, R. W., & Rejeki, S. (2018). Penentuan Kesesuaian Wilayah Pesisir Muara Gembong, Kabupaten Bekasi Untuk Lokasi Pengembangan Budidaya Rumput Laut Dengan Pemanfaatan Sistem Informasi Geografis (SIG). Sains Akuakultur Tropis: Indonesian Journal of Tropical Aquaculture, 2(1), 73–82. https://doi.org/https://doi.org/10.14710/sat.v2i1.2562
Rueda, F. J., Schladow, S. G., Monismith, S. G., & Stacey, M. T. (2005). On the effects of topography on wind and the generation of currents in a large multi-basin lake. Hydrobiologia, 532(1–3), 139–151. https://doi.org/10.1007/s10750-004-9522-4
Sahalan, M. I., Idris, M. H. M., Abidin, Z. Z., & Che Kamarudin, M. A. A. (2016). Tilt compensated mechanical measurement mechanism for very shallow water USV bathymetry. 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), 48–54. https://doi.org/10.1109/USYS.2016.7893933
Saputro, D. N., Hermanto, N. I. S., Hermanto, N. I. S., & Susanto, H. (2023). Pemetaan Bathimetri Dan Pemodelan Dasar Danau Menggunakan Single Beam Echosounder. Siklus: Jurnal Teknik Sipil, 9(1), 1–10. https://doi.org/10.31849/siklus.v9i1.11412
Sartimbul, A., Mujiadi, M., Hartanto, H., Prabowo, S. S., & Suryono, A. (2015). Analisis kapasitas tampungan danau sentani untuk mengetahui fungsi detensi dan retensi tampungan. Limnotek: Perairan Darat Tropis Di Indonesia, 22(1).
Sun, Z., Huang, Q., & Lotz, T. (2020). Evolution of Flood Regulation Capacity for a Large Shallow Retention Lake: Characterization, Mechanism, and Impacts. Water, 12(10), 2853. https://doi.org/10.3390/w12102853
Vázquez, R. F., Mosquera, P. V., & Hampel, H. (2024). Bathymetric Modelling of High Mountain Tropical Lakes of Southern Ecuador. Water, 16(8), 1142. https://doi.org/10.3390/w16081142
Wabha, G. (1990). Spline models for observational data.
Wu, T., Qin, B., Zhu, G., Zhu, M., Li, W., & Luan, C. (2013). Modeling of turbidity dynamics caused by wind-induced waves and current in the Taihu Lake. International Journal of Sediment Research, 28(2), 139–148. https://doi.org/10.1016/S1001-6279(13)60026-8
Zhou, B., & Ye, H. (2016). A study of polynomial fit-based methods for qualitative trend analysis. Journal of Process Control, 37, 21–33. https://doi.org/10.1016/j.jprocont.2015.11.003
Zhu, S., Liu, B., Wan, W., Xie, H., Fang, Y., Chen, X., Li, H., Fang, W., Zhang, G., Tao, M., & Hong, Y. (2019). A New Digital Lake Bathymetry Model Using the Step-Wise Water Recession Method to Generate 3D Lake Bathymetric Maps Based on DEMs. Water, 11(6), 1151. https://doi.org/10.3390/w11061151
Zhu, S., Wan, W., Zhang, G., Yao, Z., Xu, Y., Liu, B., Guo, Z., Luo, Z., Xiong, W., Ji, R., Ji, Q., He, Y., Lv, F., Fang, W., Tan, X., Huang, Q., Xiao, L., & Li, H. (2024). Exploring the topographical pattern beneath the water surface: Global bathymetric volume-area-height curves (BVAH) of inland surface water bodies. Geodesy and Geodynamics, 15(6), 602–615. https://doi.org/10.1016/j.geog.2024.06.005
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Adithya Kresna Sumaamijaya, Fazel Karly, Nandra Ramira Ar, Haikal Muhammad Ihsan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





