
DETERMINANTS OF INTEREST IN USING E-MONEY AMONG STUDENTS

Triesti Candrawati

Politeknik Negeri Malang

Email:triesti.candrawati@polinema.ac.id

Diterima: 15/05/2025

Diterima: 08/06/2025

DiPublikasi: 01/07/2025

DOI: <https://doi.org/10.22225/kr.17.1.2025.128-138>

Abstract

Current technological advances have had a huge impact on the development of payment instruments. E-money is a form of payment that is growing rapidly at this time. The use of e-money has several differences compared to paper money, primarily in terms of practicality and security aspects. A very big impact is felt on human life with advances in technology and information. The purpose of this research is to determine what determinants can influence students to use e-money in making payment transactions. The population of 188 students in the Management Accounting Study Program of Malang State Polytechnic Population.

Meanwhile, 84 students were selected using a purposive sampling method. The method of analysis in this study employs multiple regression analysis to identify factors that influence students' use of e-money. The results of this study conclude that the use of e-money is positively and significantly influenced by the variable Perceived usefulness and Perceived ease of use, but the variable perceived cost does not have a positive and significant effect on the interest in using e-money.

Kata Kunci: Perceived usefulness, Perceived ease of use, Perceived cost and e-money

Abstrak

Kemajuan teknologi saat ini memberikan dampak yang sangat besar terhadap perkembangan alat pembayaran. E-money merupakan salah satu bentuk pembayaran yang berkembang pesat saat ini. Penggunaan e-money mempunyai beberapa perbedaan dibandingkan dengan uang kertas, terutama dari segi kepraktisan dan keamanannya. Dampak yang sangat besar dirasakan terhadap kehidupan manusia dengan kemajuan teknologi dan informasi. Tujuan dari penelitian ini adalah untuk mengetahui determinan apa saja yang dapat mempengaruhi mahasiswa dalam menggunakan e-money dalam melakukan transaksi pembayaran. Populasi sebanyak 188 mahasiswa Program Studi Akuntansi Manajemen Politeknik Negeri Malang Populasi.

Sedangkan 84 siswa dipilih dengan menggunakan metode purposive sampling. Metode analisis dalam penelitian ini menggunakan analisis regresi berganda untuk mengidentifikasi faktor-faktor yang mempengaruhi penggunaan e-money oleh mahasiswa. Hasil penelitian ini menyimpulkan bahwa penggunaan e-money dipengaruhi secara positif dan signifikan oleh variabel Perceived kegunaan dan Perceived kemudahan penggunaan, namun variabel persepsi biaya tidak berpengaruh positif dan signifikan terhadap minat menggunakan e-money.

Kata Kunci: Persepsi kegunaan, Persepsi kemudahan penggunaan, Persepsi biaya dan e-money

INTRODUCTION

The increasing use of payment instruments today is largely due to advances in technology. One of the payment instruments that is developing very rapidly at this time is e-money. The National Non-Cash Movement (GNNT) was established on August 14, 2014, by Bank Indonesia. This movement aims to raise awareness among the Indonesian people about the use of non-cash payment instruments. Thus, the situation will slowly form a group or group that will use non-cash instruments in making payment transaction processes (Less Cash Society/LCS) (bi.go.id).

Regulations regarding e-money issuance permits were issued by Bank Indonesia in 2009, as outlined in Bank Indonesia Regulation Number 11/12/PBI/2009. In 2016, Bank Indonesia reported that the number of electronic money cards in circulation was 51.3 million. At the same time, the number of transactions made using e-money reached 683.2 million, which amounted to IDR 7.1 trillion (marketeers.com., 2017). The increase in transactions continues to occur in terms of both the number of transactions and volume each year.

The development of electronic payments, such as those made with electronic cards or e-money, is significantly larger than the growth of credit cards and ATM cards, which tend to remain stagnant. As of 2015, Indonesia had 112.9 million ATMs and debit cards. At the same time, the number of credit cards in the same year was 16.9 cards. Through credit cards, the transaction value reached IDR 281.3 trillion in 2015, while the transaction value through ATMs and Debit cards was recorded at IDR 4.4 Quadrillion. (www.kemenkeu.go.id)

One of the payment instruments that has great potential to encourage increased financial inclusion is the use of e-money. E-money services and products are currently widely offered by communication companies and financial institutions. They compete to issue these payment instruments. Almost all major banks in Indonesia offer e-money services to their customers, facilitating the transaction process, as do communication companies. In addition, fintech startup players also do not want to lose out on issuing services in the form of e-money, even though they are smaller-scale companies.

Based on data from the Indonesia Fintech Association, there are approximately 135 fintech startup players in Indonesia. Business players involved in the payment sector account for approximately 43% of that number. The fintech startup players include Doku, Kartuku, Midtrans, Kesles, Go-Pay, and many more. Meanwhile, business players in the e-commerce and marketplace sectors offer their payment features, such as Bukalapak with the Bukadompet feature, Tokopedia with the balance feature, and Kaskus with Brankas and Kaspay. In Indonesia, there are only six fintech startup players out of 22 e-wallet license owners, while the rest are held by banks and telecommunications companies, which are indeed large (marketeers.com, 2017).

The payment instrument currently widely used to facilitate payment transactions of all kinds is e-money, also known as electronic money. In general, the definition of e-money (electronic money) is a payment instrument that is connected to electronic media using computer network facilities and the Internet. The amount of customer money will later be stored in a certain electronic media. The term "electronic money" has other terms, including Electronic Cash, Digital Money, Digital Cash, Electronic Currency, or Digital Currency. Transactions using E-money are guaranteed to be very safe. One of the fintech products widely used by the Indonesian people for payment transactions today is Digital e-money. The existence of e-money aims to reduce the use of cash in the payment transaction process, ultimately leading people to switch to using electronic money. The phenomenon of e-money, a digital payment method, has become a trend that facilitates business activities. E-money is greatly needed by the community, especially those with extraordinary busyness; therefore, the use of technology, software, the internet, communication, and computing is an important factor. Transactions have become easier and faster, making digital payments with e-money increasingly popular among the public.

Currently, shopping centres that utilize parking services, Gojek services, GoFood, and others are starting to adopt e-money in their payment transactions, indicating an increase in the presence of fintech in this digital era. Along with this, providers, in this case, digital payment service providers, issue digital payment instrument products that can be used in the payment transaction process. The digital payment system can be operated using a QR code. Students, in general, when determining their level of consumption, are greatly influenced by their level of income, both in terms of goods and services, as well as banking products such as electronic money.

LITERATURE REVIEW

Definition of E-money

According to the Bank of International Settlement (BIS) in the Bank Indonesia e-money Operational study in October 2016, the definition of e-money is "An electronic device that keeps records of funds or value available to consumers that are store-value or prepaid".

Meanwhile, another definition of electronic money is a payment instrument that is connected to a computer network and the internet or uses electronic media, where the amount or value of the customer's money is stored or exists in certain electronic media.

The types of electronic money (e-money) are:

1. Prepaid lunar device (Prepaid Software), which is an e-money whose amount or value is stored in a PC's hard disk. The process of transferring funds is done through an internet network. This prepaid software is often referred to as digital cash.
2. Prepaid Card, which is an e-money where the amount or value is stored in a chip embedded in a card. Examples of prepaid cards are Flazz BCA, E-Mandiri, Brizzi and BNI Prepaid.

The process of using e-money does not require prior approval, unlike using a PIN or signature. Thus, because the transaction process is not directly related to bank customers. E-money, in its payment transaction process, is not charged to a bank account, such as a credit card or debit card. However, this can be achieved by refilling.

Functions of e-money

By using e-money, we can easily, quickly, and practically run the payment process. The function of using e-money is as follows:

1. Through all the payment transaction processes, we will gain convenience, speed, and practicality. Thus, we do not have to bother carrying cash to pay for it.
2. At the time of payment transaction, no refund is required.
3. For various transactions with a very high level of usage, for example, paying for PDAM water and electricity, paying taxes, paying tolls, booking plane tickets, etc., you can use electronic money (e-money).

E-money has the following advantages:

1. Consumers enjoy convenience through sophisticated facilities available in e-money, which utilizes advanced devices. As a result, consumers do not need to carry or prepare cash for payment transactions.
2. Consumer confidence increases; in the process of use, consumers will feel safe and confident because a code is used to secure operational techniques on the card. Therefore, if the card is lost, then other people will not be able to use the money in the smart card. With this facility, it will be able to increase further consumer confidence in using e-money.
3. For issuers, they will receive benefits, as the e-money system's operation has a significantly lower cost than other payment models. Therefore, the obligation for issuers can also be lighter, as it can reduce costs and increase profits.

Besides, e-money has advantages, but it also has disadvantages. The disadvantages of e-money are as follows:

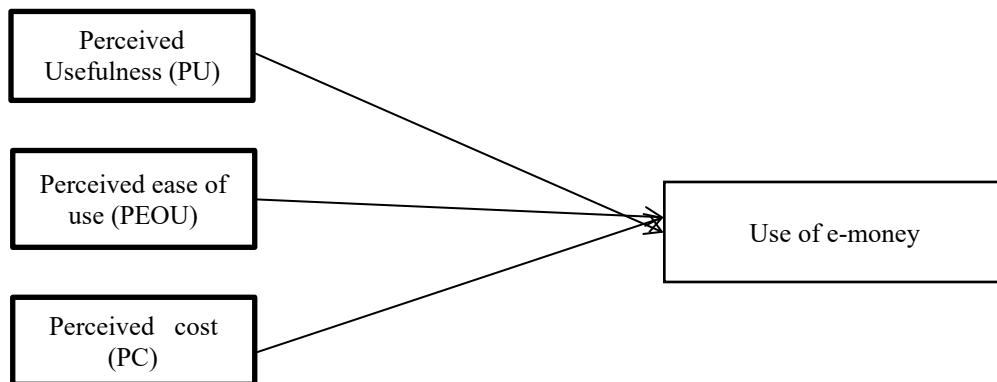
1. Limited, meaning that there are limits to transactions carried out each day.
2. The risk of being hacked is particularly significant for e-money cards, as a damaged data processing system can lead to hacking, which would be detrimental to e-money users. If the data processing system is damaged, it can compromise the personal data stored on the owner's card.
3. Requires an internet connection; in this case, an internet connection is an important factor; if there is a failure in the internet network, then we cannot make online transactions to the accounts we have; this will be more problematic if the location is far from the ATM location, this will make it difficult for the e-money card user

The variables Perceived Usefulness (PU), Perceived ease of use (PEOU), and Perceived cost (PC) are the variables used in this study.

Perceived Usefulness (PU)

According to Phonthanukitithaworn et al. (2016), an activity of the payment transaction process that is carried out when using mobile services results in an increase in performance and productivity. Thus, it will establish trust in using the mobile service. It was also noted by Venkatesh and Davis (2000), who observed that a payment transaction carried out through a service system can enhance performance. Davis (1989) stated that perceived usefulness is defined here as a performance that will increase if someone believes in using a system.

Perceived ease of use (PEOU)


A payment transaction process, if conducted through a system that utilises technology, is the definition of perceived use, according to Jogianto in Ramadhan (2016). From this definition, it is evident that the perceived use of a payment system involves a decision-making process based on a belief in its effectiveness. An information system that is easy to use and with which the user is confident will be used. According to Davis (1989), one of the variables that determines whether a system will be accepted or rejected is Perceived ease of use. The extent to which someone believes that by using the application, it will be free of effort is the definition of Perceived ease of use. Users will easily accept an application that is easier to run than other systems. So that users can complete their activities more quickly and efficiently compared to other systems, which are often more difficult to use (Venkatesh & Morris, 2000).

Perceived Cost (PC)

The use of payment systems that utilise e-money incurs transaction costs, including additional costs associated with recharging. Consumers must be willing to pay for communication and handset costs if they are going to start using mobile payment services, so they must consider the perceived risk variable. To decide whether someone will adopt a mobile payment service, they must also consider the perceived cost (Anjelina, 2018).

Conceptual Framework

The conceptual framework in this research is as follows:

Hipotesis

The research hypothesis can be explained as follows:

H1: Perceived Usefulness has a positive and significant influence on interest in using e-money.

H2: Perceived ease of use has a positive and significant influence on interest in using e-money.

H3: Perceived cost has a positive and significant effect on interest in using e-money.

RESEARCH METHOD

Based on the research objectives to be achieved, this type of research is explanatory research, where, according to Sugiyono (2013:6), explanatory research is defined as research that explains the relationship between the variables studied and the relationship between one variable and another through testing the formulated hypothesis.

Meanwhile, according to Sugiyono (2010:61), a generalisation area consisting of objects or subjects that possess certain qualities and characteristics, which are determined and studied, from which conclusions are drawn, is called a population. According to Arikunto (2019:173), a population refers to the entire group of subjects under study. The population in this study were 188 students majoring in Management Accounting at the Malang State Polytechnic. From this population, a sample of 84 students was obtained. The purposive sampling method was employed to select the sample for the study. This method is a non-probability sample that selects participants based on specific criteria related to the population's characteristics, which have been previously determined.

The questionnaire is a method used to find data in this study. A collection of written questions or statements given to respondents to be answered is called a questionnaire. The Likert scale is used to determine the behaviour, ideas, and appreciation of individuals or groups of people regarding an event that has occurred (Sugiyono, 2009, p. 107). The Likert scale can be seen below:

1. Strongly disagree
2. Disagree
3. Neutral or unsure
4. Agree
5. Strongly agree

Classical Assumptions

Classical Assumptions consist of:

1. Normality

According to Ghazali (2011:160), the goal of testing whether a disruptive variable or residual in a regression model has a normal distribution is to assess the normality of the data. In this case, the normal distribution will be in the form of a straight diagonal line, and also the plotting of residual data will be compared with the diagonal line. If the distribution of residual data is normal, then the line that shows the actual data will follow the diagonal line.

2. Heteroscedasticity

To test a regression model to determine whether there is an inequality of variance from one observation residual to another observation is the purpose of heteroscedasticity. An indication of heteroscedasticity occurs when the independent variable has a statistically significant influence on the dependent variable. However, if the p-value in the t-test results has a regression coefficient greater than the alpha value of 0.05, then it can be said that the residual value does not show symptoms of heteroscedasticity (Ghazali, 2011, p. 143)

3. Autocorrelation

According to Ghazali (2011:110), the correlation that occurs between the disturbance error in period t with the disturbance error in period t-1 (previously) in a linear regression model is called autocorrelation.

4. Multicollinearity

If there is a definite linear relationship between some or all explanatory variables of all regression models, then Multicollinearity occurs. A test of whether there is a correlation between independent variables, while a good regression model should not correlate with independent variables, is the goal of Multicollinearity. A tolerance value <0.10 or equal to a VIF value> 10 is a cut-off value that is commonly used to indicate multicollinearity (Ghazali, 2011, p. 106).

RESULT AND DISCUSSION

Interpretation of validity and reliability

The quality of data used in a test is a crucial factor in the hypothesis testing process, ensuring accuracy in testing the relationship between research variables. Testing is carried out first on the validity and reliability of the research instrument that will be used in a study before conducting a hypothesis test. If the test results show a significance value (p) smaller than alpha 0.05, then the testing of the research instrument in terms of validity and reliability is valid (Masrun in Sugiyono, 2006: 106). If it has a reliability coefficient of 0.6 or more, the instrument (questionnaire) is said to be reliable (Azwar, 2013). The results of testing the research instrument can be seen in the table below.

Table 1. Validity Test of Research Instruments using Pearson correlation

Variables	Item	Validity		Decision
		Correlation (r)	Significance	
<i>Perceived usefulness</i>	PU1	0.863	0.000	Valid
	PU2	0.854	0.000	Valid
	PU3	0.842	0.000	Valid
	PEOU1	0.792	0.000	Valid
<i>Perceived ease of use</i>	PEOU2	0.798	0.000	Valid
	PEOU3	0.775	0.000	Valid
	PEOU4	0.736	0.000	Valid
	PC1	0.896	0.000	Valid
<i>Perceived Cost</i>	PC2	0.873	0.000	Valid
	PC3	0.837	0.000	Valid
	y1	0.869	0.000	Valid
<i>Use of e-money</i>	y2	0.896	0.000	Valid
	y3	0.849	0.000	Valid

y4	0.824	0.000	Valid
----	-------	-------	-------

All instrument items used in this study have a significance value of less than alpha 0.05 (Valid, $p < 0.05$), so all research instrument items can be said to have met the validity requirements.

By referring to the reliability criteria explained by Azwar (2013) where, the reliability criteria of the variables used in this study are considered adequate and meet the requirements, namely if the alpha coefficient is 0.60-0.70. The criteria for the reliability coefficient index can be seen in the table below:

Table 2. Reliability Coefficient Index Criteria

No.	Reliability Index Interval	Criteria
1	< 0.200	Very low
2	0.200-0.399	Low
3	0.400-0.599	Enough
4	0.600-0.799	Tall
5	0.800-1.00	Very high

After conducting reliability testing, the results of the research instrument reliability test were as follows:

Table 3. Reliability Test of Research Instruments

Variables	Alpha Cronbach (based on standardized items)	Information
<i>Perceived usefulness</i>	0.813	Very high reliability
<i>Perceived ease of use</i>	0.779	High reliability
<i>Perceived Cost</i>	0.837	Very high reliability
Penggunaan e-money	0.882	Very high reliability

After testing, it was found that the Cronbach alpha value of all tested variables had a standardized item alpha (SIA) value greater than the specified reliability value of 0.6. Therefore, all items, as a measure of the observed variables, are reliable. It means that regardless of the number of questions in the questionnaire that the researcher describes and the different respondents to whom they are delivered, the responses obtained from these respondents will not be significantly different.

Classical assumption test

A testing process carried out on data assumptions before conducting multiple regression analysis is a classical assumption test.

Data Normality Test

To assess the normality of data distribution and homogeneity of data variance, the normality of data is tested for homogeneity of variance using unstandardized residuals or errors, which is the purpose of the data normality test (Santoso, 2010). The conclusion of the normality test is shown in the table below:

One-Sample Kolmogorov-Smirnov Test

		Unstandardized Residual for PC, PEOU, PU, Y
N		84
Normal Parameters ^{a,b}	Mean	.0000000
	Std. Deviation	1.51545520
Most Extreme Differences	Absolute	.087
	Positive	.087
	Negative	-.055
Kolmogorov-Smirnov Z		.794
Asymp. Sig. (2-tailed)		.554

a. Test distribution is Normal.

b. Calculated from data.

If the Asymp. Sig. Value > 0.05 = data is normally distributed.

The test conducted using SPSS provides a significance value of the unstandardized residual for all variables, both independent and dependent, obtained a result of 0.554, where the result is greater than alpha 0.05, then H_0 is accepted. This shows that all independent and dependent variables used for testing have a normal distribution. Therefore, it can be continued for further testing because the assumption of data normality has been met.

Uji Heteroskedastisitas

Disturbance in regression must be homogeneous (homoscedasticity occurs), and Heteroscedasticity does not occur, which is a basic assumption of a linear regression model (Santoso, 2010). It means that the variance (variety) of the residuals from one observation to another of an independent variable to be tested is the same. This assumption is mathematically as follows:

$$E(U_i^2) = \sigma^2, \text{ where } i = 1, 2, 3, \dots, N$$

There are various methods used to detect the presence or absence of heteroscedasticity. These methods include the Park test, graphic test, Geyser test, Spearman's test, Rank Correlation, and others. This study employed the Spearman Rank correlation test for testing purposes. Suppose the Spearman Rank correlation between the independent variables and their residuals has a significant value greater than α (5%). In that case, this indicates that there is no Heteroscedasticity, but if the significant value is smaller than α (5%), it means that there is Heteroscedasticity.

Correlations

		Unstandardized Residual
Spearman's rho	PU	Correlation Coefficient
		Sig. (2-tailed)
	N	84
PEOU		Correlation Coefficient
		Sig. (2-tailed)
	N	84
PC		Correlation Coefficient
		Sig. (2-tailed)
	N	84

Testing conducted using the Sperm Correlation Test shows that the three independent variables, namely Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3), produce significance values of 0.837, 0.835, and 0.755, where these values are greater than alpha 0.05. It means that all independent variables have variants (varieties) that are not significantly different from each other. The next step is to conduct further testing because the assumption of no heteroscedasticity has been met. In other words, there is no heteroscedasticity, or the variety (variance) for the independent variables is homogeneous.

Autocorrelation Test

The occurrence of a relationship with the independent variables themselves or correlation (autocorrelation) can be detected using a hypothesis:

There is no autocorrelation between errors if $H_0 : P = 0$

There is autocorrelation between errors if $H_1 : p > 0$

Durbin Watson is a test statistic used to detect the presence or absence of autocorrelation.

Test criteria (Santoso, 2010):

- There is positive autocorrelation if $DW < -2$
- There is no autocorrelation if $-2 < DW < +2$
- there is negative autocorrelation if $DW > +2$

Model Summary^{a,b}

Model	Durbin-Watson
1	1.873

a. Predictors: (Constant), PC, PEOU, PU

b. Dependent Variable: Y

After testing the detection of autocorrelation or not, the values of +2 and -2 or $-2 < 1.873 < +2$ are produced, so the result is that dw is between these numbers. It shows that there is no autocorrelation between these variables. The results are presented in the table above.

Multicollinearity Test

Multicollinearity can be detected from the Value Inflation Factor (VIF). Multicollinearity occurs if the VIF value is > 10 , but if the VIF value is < 10 , then there is no multicollinearity. The measure of multicollinearity among independent variables is VIF, which can be formulated as:

$$VIF(\hat{b}_i) = \frac{1}{(1 - R_i^2)} \text{ Where } i = 1, 2, 3, \dots, n$$

R^2 = coefficient of determination (square of the correlation coefficient)

Tolerance = $1 - R^2$

Coefficients^a

Model	Collinearity Statistics		
	Tolerance	VIF	
1	.575	1.740	
	.576	1.736	
	.982	1.019	

a. Dependent Variable: Y

The three independent variables (free variables) in this study show a result where there is no multicollinearity; this is because the VIF value of the three independent variables (free variables) has a value of less than 10, and the tolerance value is less than 0.1.

Interpretation of Multiple Regression Test Results

Correlation Testing

To determine the relationship between variables in a study, the Pearson Product-Moment correlation can be used to establish it. This step is done before conducting regression analysis. The variables that will be tested using Pearson product-moment correlation are Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3) with the use of e-money. The results of testing using Pearson product-moment correlation are as in the table below:

Table 4. Pearson Product Moment Correlation Test

	Correlation (r)	Sig. (p)	Decision
Correlation between Perceived usefulness and use of e-money	0.652	0.000	Significant
Correlation between Perceived ease of use and use of e-money	0.639	0.000	Significant
Correlation between Perceived Cost and e-money use	0.055	0.311	Not Significant

After the testing stage, using Pearson product-moment correlation, a result was obtained indicating that there were two independent variables, namely the Perceived Usefulness variable and the Perceived Ease of Use variable, which had a significant value of less than alpha 0.05. It shows that there is a significant positive relationship between the Perceived usefulness variable ($RX_1 = 0.652$ with $p = 0.000$), and the Perceived ease of use variable ($RX_2 = 0.639$ with $p = 0.000$), with the use of e-money (Y). Thus, the use of e-money (Y) will increase due to a significantly better increase in the Perceived usefulness variable (X1) and Perceived ease of use (X2). While the Perceived Cost variable has a significant value of more than 0.005. That means that there is a positive and significant relationship between the Perceived Cost variable ($RX_3 = 0.055$ with $p = 0.311$) and the use of e-money (Y). Therefore, the rise and fall of e-money usage is not related to the good or bad perceived cost variable.

Multiple Regression Testing

After conducting correlation testing using Pearson product-moment correlation, the next step is to conduct regression testing. The results of the regression testing are as follows:

Tabel 5. Hasil Analisis Regresi

Variabel	Koefisien regresi (b)	Std. Error	Beta	t _{count}	Sig.	Information
Konstanta	0.822	1.674		0.491	0.625	Not Significant
X ₁	0.520	0.125	0.423	4.174	0.000	Significant
X ₂	0.401	0.106	0.383	3.783	0.000	Significant
X ₃	0.143	0.072	0.154	1.984	0.051	Not Significant
R (Multiple R)	= 0,727					
R Square	= 0,529					
R Square (Adjusted)	= 0,511					
F hitung	= 29.896					
Sign. F	= 0,000					
α	= 0,05					

After testing the regression analysis, the coefficient of determination (R Square) was obtained at 0.529. The corrected coefficient of determination, adjusted for error or bias, was 0.511, aiming to improve the model's accuracy in the population, as indicated by the Adjusted R-Square (R^2). It can be concluded that the use of e-money is influenced by the variables Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3) by 52.9%, while factors other than the variables used as variables in the study that influence the use of e-money are 47%.

To find out whether the use of e-money is influenced by the variables Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3), a hypothesis test was carried out using multiple regression.

Testing of all independent variables that will be used in the model (Model Feasibility Test) to see whether they will have a significant influence together on the dependent variable or not is done by using the F Test.

Hypothesis:

Ho: The variables Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3) do not have

a simultaneous influence on the use of e-money

H1: The variables Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3) have a simultaneous influence on the use of e-money

Rejection criteria:

If: $F_{\text{count}} > F_{\alpha,1,n-2}$ or Sig value. $< 0,05$, then reject H_0

If: $F_{\text{count}} < F_{\alpha,1,n-2}$ or Sig value. $> 0,05$, then accept H_0

After the F-test was conducted, a significance value of 0.000 ($p < 0.05$) was obtained, indicating that the use of e-money is influenced simultaneously by the variables Perceived Usefulness (X1), Perceived Ease of Use (X2), and Perceived Cost (X3). Thus, to make further predictions, the resulting regression model is feasible to use. Thus, it can be concluded that the use of e-money is determined by the factors Perceived usefulness (X1), Perceived ease of use (X2), and Perceived Cost (X3) with the regression equation as below:

$$Y = 0.822 + 0,520 X_1 + 0,401 X_2 + 0,143 X_3$$

The test used to determine whether the independent variable has a significant influence on the dependent variable when considered individually can be performed using the t-test (partial test).

To show the significance of the regression coefficient on the regression model formed, the hypothesis is:

The regression coefficient is not significant (real): H_0

Significant (real) regression coefficient: H_1

The significance value of the Perceived usefulness variable (X1) after testing shows a significance value of 0.000, where the significance value is less than alpha 0.05. Therefore, it can be interpreted that the use of e-money is positively and significantly influenced by the Perceived usefulness variable (X1). These results suggest that if e-money is easier to use, consumer interest in using it will also be higher and more preferred. This study is in line with the opinion of Davis et al. (1989) in Priambodo and Prabawani (2016). Namely, the perception of ease of use of e-money has been proven to have an effect on interest through two causal pathways: the direct effect on interest and the indirect effect on interest. Likewise, research titled "Student Perception in Using E-money" conducted by Ramadan, Prasetyo, and Irviana (2016) provides results indicating that the perceived usefulness variable significantly influences the use of e-money.

The test of the Perceived ease of use (X2) variable shows a significance value of 0.000. This significance value is less than 0.05, indicating that the perceived ease of use variable has a positive and significant influence on the use of e-money. These results suggest that consumers are willing to use e-money with high interest rates because it is more convenient for transactions in terms of payments. If a system is easier for its users to operate, it will enable them to complete their tasks faster and more efficiently compared to a more difficult system (Ventkatesh & Morris, 2000). This study aligns with the study entitled "TAM Analysis of Factors Influencing Consumers Using Indomaret Card E-money in Pontianak," conducted by Fitriana and Wingdes (2017), which yielded similar results. The study's results indicated that the perceived ease of use variable has a significant effect on the use of e-money. Consumers find the ease of transacting using e-money to be very useful, as it enhances the system's functionality. Research conducted by Sigar, F. Junita (2016) on "The Influence of Perceived Usefulness, Perceived Ease of Use, and Perceived Enjoyment on Intention to Use Electronic Money in Manado provides the same conclusion, namely that the use of e-money is positive and significantly influenced by the variable Perceived Ease of Use.

Testing the Perceived Cost (X3) variable produces a significance value of 0.051, which is greater than alpha 0.05, so it can be concluded that the use of e-money is not positively and significantly influenced by the perceived cost (X3) variable. In payment transactions using e-money, consumers often perceive that costs must be incurred. This study is in line with the study entitled Consumer Perceptions on the Use of E-Money (Anjelina, 2018).

CONCLUSION

This study provides results indicating that the use of e-money is positively and significantly influenced by the variables Perceived Usefulness and Perceived Ease of Use. At the same time, the variable perceived cost of using e-money does not have a positive and significant influence. During the study, in addition to the variables Perceived Usefulness, Perceived Ease of Use, and Perceived Cost, researchers identified other factors

that encourage consumers to use e-money. These factors include information from friends about using e-money and the offer of cash back for e-money transactions.

REFERENCES

Anjelina, (2018). Persepsi Konsumen pada Penggunaan *e-money*. *Journal Of Applied Managerial Accounting*. Vol. 2, No. 2, Page 90–102, 2018

Arikunto, S. (2019). *Prosedur Penelitian*. Jakarta: Rineka Cipta

Azwar, Saifuddin. 2013. *Reliabilitas dan Validitas Edisi 4*. Yogyakarta: Pustaka Pelajar.

Davis, F.D. (1989). Perceived usefulness, Perceived ease of use, and user acceptance of information technology.

Fadhillah Junita, Sigar . 2016. The Influence of Perceived Usefulness, Perceived Ease of Use, and Perceived Enjoyment to Intention To Use Electronic Money in Manado. *Jurnal EMBA*, Vol. 4, No. 4, Hal. 498-507.

Fitriana, Ana & Wingdes, Irawan. 2017. Analisis TAM Terhadap Faktor-faktor yang mempengaruhi Konsumen menggunakan *e-money* Indomaret Card di Pontianak, *Techno.COM.*, vol. 16, No. 4

Ghozali, Imam, (2011) *Aplikasi Analisis Multivariat dengan Program SPSS*. Semarang. Badan Penerbit Universitas Diponegoro.

Jogiyanto, 2007. Sistem Informasi Keprilakuan, Yogyakarta.

MIS Quarterly, 13, 319-340

Phonthanukitithaworn, C., Sellitto, C, & Fong, M.W.L., (2016). An investigation of Mobile Payment (MPayment) services in Thailand. *Asia-Pacific Journal of Business Administration*, Vol. 8 Iss 1

Priambodo dan Prabawani, B., 2016. Pengaruh Persepsi Manfaat, Persepsi Kemudahan Penggunaan, dan Persepsi Resiko Terhadap Minat Menggunakan Layanan Uang Elektronik (Studi Kasus Pada Masyarakat Kota Semarang), *Jurnal Ilmu Administrasi Bisnis*, Volume 5, Nomor 2, Tahun 2016.

Ramadhan, Firman, Adi, Prasetyo, Budi, Andrian & Irviana, Lala. 2016. Perspsi Mahasiswa Dalam Menggunakan *e-money*. *Jurnal Dinamika Ekonomi & Bisnis*. Vol. 3, No. 2

Santoso, S. 2010. *Statistik Multivariat*. Jakarta:Penerbit PT Elex Media Komputindo.

Singarimbun, M. 2011. Metode Penelitian Survey. Edisi Revisi. Cetakan Ke-2. Jakarta : PT Pustaka LP3ES Indonesia

Sugiyono, 2008. *Metode Penelitian Bisnis*, CV Alfabeta, Bandung.

Sugiyono. 2009. *Metode Penelitian Administrasi*, Cetakan Ke 17, CV Alfabeta, Bandung

Sugiyono, 2013. *Metode Penelitian Bisnis*, CV Alfabeta, Bandung.

Venkatesh, V, & Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. *Management Science*, Vol. 46. No. 2

www.marketeers.com. Diakses tanggal 11 Maret 2019

www.kemenkeu.go.id/. Publikasi/artikel dan opini. Diakses tanggal 11 Maret 2019