Cloud-based multitemporal shoreline change analysis using google earth engine and DSAS: A case study of Canggu Beach, Bali, Indonesia

Authors

  • I Dewa Ayu Meia Damayanthi Master Program in Civil Engineering, Udayana University, Denpasar, 80234, Indonesia
  • Ni Nyoman Pujianiki Department of Civil Engineering, Udayana University, Badung, 80361, Indonesia
  • Silvia Gabrina Tonyes Department of Civil Engineering, Udayana University, Badung, 80361, Indonesia

DOI:

https://doi.org/10.22225/jipe.4.2.2025.83-91

Keywords:

Canggu beach, shoreline change, remote sensing, google earth engine, DSAS

Abstract

Canggu Beach, Bali, is a multifunctional coastal area that faces environmental pressures due to erosion and rapid coastal development. This study analyzed shoreline changes during the period 2016-2024 using multitemporal Sentinel-2 satellite images processed through the Google Earth Engine (GEE) platform. Shoreline extraction was performed using NDWI index and Otsu threshold method, with sea level stability control based on HYCOM data. Shoreline change analysis was conducted using Digital Shoreline Analysis System (DSAS) on 247 transects with Net Shoreline Movement (NSM) and End Point Rate (EPR) approaches. Results showed a dominant trend of accretion (NSM +16.61 m; EPR +2.26 m/year), with localized erosion (NSM -8.8 m; EPR -1.2 m/year), identified around estuary and structured areas. Spatial patterns of change were visualized in the form of multitemporal maps and statistical histograms, revealing uneven shoreline dynamics. The integration of GEE and DSAS proved effective for large-scale shoreline monitoring, and the results can provide a basis for adaptive coastal management in dynamic, multi-functional coastal areas.

References

[1] B. Triatmodjo, Buku Teknik Pantai. Yogyakarta: Beta Offset Yogyakarta, 2016.

[2] G. M. Al Muqoddis and F. Masitoh, “Analisis Perubahan Garis Pantai dengan Pengindraan Jarak Jauh di Kabupaten Badung, Bali Indonesia,” vol. 5, no. 2, pp. 129–136, 2024.

[3] Sutrisno, A. M. Faradj, and F. A. F. Wijaksa, “Pemetaan Kebutuhan Tangkis Laut Di Wilayah Daratan - Kecamatan Ambunten, Dasuk, Dan Batu Putih Kabupaten Sumenep,” J. “ MITSU ” Media Inf. Tek. Sipil UNIJA, vol. 4, no. 2, p. 2339, 2016.

[4] M. Wibowo, “Penilaian Tingkat Kerusakandan Prioritas Penanganan Pantai Kuwaru,Kabupaten Bantul, Yogyakarta,” Pertem. Ilm. Nas. Tah. XIII ISOI, pp. 1–2, 2016.

[5] S. P. C. Astiti, T. Osawa, and I. W. Nuarsa, “Identification of Shoreline Changes Using Sentinel 2 Imagery Data In Canggu Coastal Area,” ECOTROPIC, vol. 13, no. 2, pp. 191–204, 2019.

[6] Ig. A. P. Eryani, “Analysis of Coastal Characteristics in Canggu Area Badung Regency,” pp. 1–8, 2019.

[7] N. N. Pujianiki, D. I. G. Astawa, M. W. Jayantri, and I. Mataram, “Coastal Protection Work for Batu Mejan Beach, Bali,” MATEC Web Conf., vol. 276, p. 04019, 2019.

[8] E. Ismi, M. Fauzi, and M. Yusa, “Penilaian Tingkat Kerusakan Pesisir Pulau Singkep Sebagai Upaya Mitigasi,” SAINSTEK, vol. 10, no. 2, pp. 161–170, 2022.

[9] A. Dimas and I. Bagus, “International Journal of Research Publication and Reviews Tourism Gentrification: The Case of Canggu Village , North Kuta District , Badung Regency , Bali,” Int. J. Res. Publ. Rev., no. 8, pp. 834–838, 2024.

[10] A. Isdianto, I. M. Asyari, M. F. Haykal, F. Adibah, M. J. Irsyad, and S. Supriyadi, “Analisis Perubahan Garis Pantai Dalam Mendukung Ketahanan Ekosistem Pesisir,” Jukung (Jurnal Tek. Lingkungan), vol. 6, no. 2, 2020.

[11] N. Oktaviani, P. Hartanto, D. B. Susetyo, H. A. Kusuma, Y. Ardhitasari, and R. Dewi, “Coastline Modeling Using Stacked Curve Spline Tension Interpolation,” Teknik, vol. 42, no. 2, pp. 210–217, 2021.

[12] S. A. D. Fallahiyah, A. Sawiji, and N. Noverma, “Pemetaan Tingkat Kerentanan Wilayah Pesisir Terhadap Perubahan Iklim Di Kecamatan Gending, Kabupaten Probolinggo,” J. Kelaut. Nas., vol. 18, no. 2, p. 127, 2023.

[13] L. D. A. Nugraini, W. Ratri, M. Yudinugroho, and D. A. Safitri, “Perbandingan Metode Delineasi Garis Pantai Pada Citra Landsat 8,” J. Imagi, vol. 3, no. 1, p. 14, 2023.

[14] K. Adyatama, R. Y. Setiawan, S. B. Priyono, and N. Probosunu, “Perubahan Spasial Wilayah Pesisir Kabupaten Kendal Periode 1990-2020,” J. Hidrogr. Indones., vol. 4, no. 1, pp. 1–12, 2024.

[15] Y. P. Ramadhani, I. Praktikto, and C. A. Suryono, “Perubahan Garis Pantai Menggunakan Citra Satelit Landsat Di Pesisir Kecamatan Sayung, Kabupaten Demak,” J. Mar. Res., vol. 10, no. 2, pp. 299–305, 2021.

[16] R. P. Pasaribu, L. P. Hapsari, A. A. Djari, A. Rahman, A. Tanjung, and F. A. Kapitan, “Perubahan Garis Pantai Akibat Adanya Breakwater Di Pulau Pramuka, Kepulauan Seribu, Indonesia,” J. Teknol. Perikan. Dan Kelaut., vol. 14, no. 2, pp. 125–136, 2023.

[17] B. Hamuna and J. D. Kalor, “Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System: Studi Kasus Wilayah Pesisir Kota Jayapura, Provinsi Papua,” Acropora J. Ilmu Kelaut. Dan Perikan. Papua, vol. 5, no. 2, pp. 101–110, 2022.

[18] M. F. Khoer and N. Heryana, “Tinjauan Sistematik Literatur Tentang Cloud Computing Dan Analisis Data: Arsitektur Dan Metodologi,” J. Inform. Dan Tek. Elektro Terap., vol. 12, no. 3, 2024.

[19] S. Arjasakusuma, S. S. Kusuma, S. Saringatin, P. Wicaksono, B. W. Mutaqin, and R. Rafif, “Shoreline Dynamics in East Java Province, Indonesia, From 2000 to 2019 Using Multi-Sensor Remote Sensing Data,” Land, vol. 10, no. 2, p. 100, 2021.

[20] M. Amani et al., “Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review,” Ieee J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 5326–5350, 2020.

[21] O. C. Pattipawaej and K. Oktaviani, “Analysis of Shoreline Changes in Yogyakarta Coastal Areas Using Remote Sensing Method,” Iop Conf. Ser. Earth Environ. Sci., vol. 1134, no. 1, p. 12012, 2023.

[22] J. Ankrah, A. Monteiro, and H. Madureira, “Shoreline Change and Coastal Erosion in West Africa: A Systematic Review of Research Progress and Policy Recommendation,” Geosciences, vol. 13, no. 2, p. 59, 2023.

[23] Putu Aryastana, Maria Imaculata Goran Mosa, Wayan Widiana, I Made Eryana Eka Putra, and Gede Rustiawan, “Application of normalized difference vegetation index in classifying land cover change over Bangli regency by using Landsat 8 imagery,” J. Infrastruct. Plan. Eng., vol. 1, no. 1, pp. 8–14, 2022.

[24] H. Hosseini and M. Khoshsima, “Comprehensive Investigation of the Atmospheric Modulation Transfer Function (MTF) for Satellite Imaging Payloads: Considering Turbulence and Aerosol Effects Over Tehran,” Phys. Scr., vol. 99, no. 7, p. 75044, 2024.

[25] S. Kuter, G. Weber, and Z. Akyürek, “A Progressive Approach for Processing Satellite Data by Operational Research,” Oper. Res., vol. 17, no. 2, pp. 371–393, 2016.

[26] S. Antoni, R. A. R. Bantan, T. A. Al-Dubai, M. Z. Lubis, W. Anurogo, and R. D. Silaban, “Chlorophyll-A, and Sea Surface Temperature (SST) as Proxies for Climate Changes: Case Study in Batu Ampar Waters, Riau Islands,” Iop Conf. Ser. Earth Environ. Sci., vol. 273, no. 1, p. 12012, 2019.

[27] S. Suwarsono, F. Yulianto, H. L. Fitriana, U. C. Nugroho, K. A. D. Sukowati, and M. R. Khomarudin, “Detecting the Surface Water Area in Cirata Dam Upstream Citarum Using a Water Index From Sentinel-2,” Int. J. Remote Sens. Earth Sci., vol. 17, no. 1, p. 1, 2020.

[28] W. Jiang et al., “A New Index for Identifying Water Body From Sentinel-2 Satellite Remote Sensing Imagery,” Isprs Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. V-3–2020, pp. 33–38, 2020.

[29] L. Ksenak, K. Pukanska, K. Bartos, and P. Blistan, “Assessment of the Usability of SAR and Optical Satellite Data for Monitoring Spatio-Temporal Changes in Surface Water: Bodrog River Case Study,” Water, vol. 14, no. 3, p. 299, 2022.

[30] L. Liuzzo, V. Puleo, S. Nizza, and G. Freni, “Parameterization of a Bayesian Normalized Difference Water Index for Surface Water Detection,” Geosciences, vol. 10, no. 7, p. 260, 2020.

[31] A. Hegyi and A. Agapiou, "Rapid Assessment of 2022 Floods Around the UNESCO Site of Mohenjo-Daro in Pakistan by Using Sentinel and Planet Labs Missions," Sustainability, vol. 15, no. 3, p. 2084, 2023.

[32] F. Karsli, U. Ozdemir, and M. Dihkan, "Spatio-Temporal Shoreline Changes Along the Southern Black Sea Coastal Zone," Journal of Applied Remote Sensing, vol. 5, no. 1, p. 53545, 2011

[33] A. O. Siregar, “Pemetaan Sebaran Dan Tutupan Lamun Menggunakan Citra Satelit Sentinel-2 Di Pulau Dua Kecamatan Enggano Provinsi Bengkulu,” J. Laut Khatulistiwa, vol. 5, no. 3, p. 125, 2022.

[34] L. Bi, B. Fu, P. Lou, and T. Tang, “Delineation Water of Pearl River Basin Using Landsat Images From Google Earth Engine,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLII-3/W10, pp. 5–10, 2020.

[35] N. Neeti, A. Pandey, and V. M. Chowdary, “Delineation of Waterlogged Areas Using Geospatial Technologies and Google Earth Engine Cloud Platform,” pp. 125–135, 2021.

[36] S. Zhou, P. Kan, J. Silbernagel, and J. Jin, “Application of Image Segmentation in Surface Water Extraction of Freshwater Lakes Using Radar Data,” Isprs Int. J. Geo-Information, vol. 9, no. 7, p. 424, 2020.

[37] K. H. Tran, M. Menenti, and J. Li, “Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold,” Remote Sens., vol. 14, no. 22, p. 5721, 2022.

[38] Y. Wang et al., “Is It Feasible to Use a Single Remote Sensing Optical Water Index for Rapid Mapping of Water Resources?,” 2024.

39] S. K. M. Abujayyab et al., “Effects of Meteorological Parameters on Surface Water Loss in Burdur Lake, Turkey Over 34 Years Landsat Google Earth Engine Time-Series,” Land, vol. 10, no. 12, p. 1301, 2021.

[40] D. Jiang, Y. Li, Q. Liu, and C. Huang, “Evaluating the Sustainable Development Science Satellite 1 (SDGSAT-1) Multi-Spectral Data for River Water Mapping: A Comparative Study With Sentinel-2,” Remote Sens., vol. 16, no. 15, p. 2716, 2024.

[41] A. A. N. A. D. Sukmajaya, I. G. N. P. Dirgayusa, and G. S. Indrawan, “Indeks Kesesuaian Wisata Pantai Batu Bolong, Canggu, Badung,” J. Mar. Aquat. Sci., vol. 9, no. 2, p. 196, 2023.

[42] I. G. A. P. Eryani and M. W. Jayantari, “Management of the Yeh Luwi Estuary Area as a Disaster Mitigation Strategy for Climate Change,” IOP Conf. Ser. Earth Environ. Sci., vol. 1416, no. 1, 2024.

[43] N. M. K. Werdi and I. G. A. P. Eryani, “Alternatif Perencanaan Jetty Di Muara Tukad Pangi Kabupaten Badung,” Padur. J. Tek. Sipil Univ. Warmadewa, vol. 9, no. 1, pp. 102–113, 2020.

[44] S. Aldiansyah and R. A. Saputra, “Monitoring Shoreline Changes for Evaluation of Regional Spatial Plans Using Google Earth Engine in West Wawonii District,” J. Geogr., vol. 20, no. 1, pp. 1–8, 2023.

Downloads

Published

2025-10-31

Issue

Section

Articles