Evaluating Curcumin Intake on Metabolism-Related Genes in Drosophila melanogaster

  • Jonathan Elbert Karsten Halim Undergraduate Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
  • Asbah Asbah Undergraduate Program in Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
  • Nadila Pratiwi Latada Unhas Fly Research Group, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
  • Mukarram Mudjahid Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
  • Usmar Usmar Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
  • Risfah Yulianti Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
  • Firzan Nainu Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
Keywords: Aging, curcumin intake, fruit fly, RT-qPCR, srl, pepck

Abstract

Background Aging entails a gradual deterioration of physiological functions within the body. Current research provides evidence suggesting that curcumin may extend the lifespan of fruit flies by mitigating the effects of aging. However, the precise concentration of curcumin necessary to induce favorable phenotypic and molecular outcomes in fruit flies has yet to be determined.

Method The study utilized the capillary feeder (CAFE) assay on male Oregon-R flies, and examined the expression of the srl and pepck genes through the reverse transcriptase quantitative PCR (RT-qPCR) method.

Case An elevation of curcumin consumption was examined in the treatment groups that were provided with feed containing curcumin concentrations of 50 μM and 250 μM. This observation is consistent with the increased lifespan noted in the Drosophila groups consuming higher concentrations of curcumin. Meanwhile, molecular analysis at the expression level of the srl and pepck genes revealed no significant change in gene expression between the treatment and control groups.

Conclusion The use of the CAFE assay assists researchers in quantitatively measuring the amount of curcumin intake in Drosophila melanogaster. However, the consumption of curcumin in this experiment did not demonstrate a significant impact on the metabolism-related genes of Drosophila, srl and pepck genes.

References

Asfa, N., Widianto, A. S., Pratama, M. K. A., Rosa, R. A., Mu’arif, A., Yulianty, R., & Nainu, F. (2023). Curcumin-mediated gene expression changes in Drosophila melanogaster. Pharmacy Education, 23 (2), 84–91. https://doi.org/10.46542/pe.2023.232.8491

Bahrami, A., Montecucco, F., Carbone, F., & Sahebkar, A. (2021). Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BioMed Research International, 2021. https://doi.org/10.1155/2021/8972074

Bielak-Zmijewska, A., Grabowska, W., Ciolko, A., Bojko, A., Mosieniak, G., Bijoch, Å., & Sikora, E. (2019). The role of curcumin in the modulation of ageing. International Journal of Molecular Sciences, 20(5). https://doi.org/10.3390/ijms20051239

Chatterjee, N., & Perrimon, N. (2021). What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. Science Advances, 7(24), 1–14. https://doi.org/10.1126/sciadv.abg4336

Diegelmann, S., Jansen, A., Jois, S., Kastenholz, K., Escarcena, L. V., Strudthoff, N., & Scholz, H. (2017). The CApillary feeder assay measures food intake in Drosophila melanogaster. Journal of Visualized Experiments, 2017(121), 1–14. https://doi.org/10.3791/55024

Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. (2022). Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01251-0

Ja, W. W., Carvalho, G. B., Mak, E. M., De La Rosa, N. N., Fang, A. Y., Liong, J. C., Benzer, S. (2007). Prandiology of Drosophila and the CAFE assay. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8253–8256. https://doi.org/10.1073/pnas.0702726104

Klaips, C. L., Jayaraj, G. G., & Hartl, F. U. (2018). Pathways of cellular proteostasis in aging and disease. Journal of Cell Biology, 217(1), 51–63. https://doi.org/10.1083/jcb.201709072

Lee, K. S., Lee, B. S., Semnani, S., Avanesian, A., Um, C. Y., Jeon, H. J., Jafari, M. (2010). Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Research, 13(5), 561–570. https://doi.org/10.1089/rej.2010.1031

Morrison, S., & Newell, K. M. (2012). Aging, neuromuscular decline, and the change in physiological and behavioral complexity of upper-limb movement dynamics. Journal of Aging Research, 2012. https://doi.org/10.1155/2012/891218

Mukherjee, S., & Duttaroy, A. (2013). Spargel/dPGC-1 is a new downstream effector in the insulin-TOR signaling pathway in Drosophila. Genetics, 195(2), 433–441. https://doi.org/10.1534/genetics.113.154583

Ng, C. H., Basil, A. H., Hang, L., Tan, R., Goh, K. L., O’Neill, S., … Lim, K. L. (2017). Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson’s disease. Neurobiology of Aging, 55, 33–37. https://doi.org/10.1016/j.neurobiolaging.2017.03.017

Onken, B., Kalinava, N., & Driscoll, M. (2020). Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension. PLoS Genetics (Vol. 16). https://doi.org/10.1371/JOURNAL.PGEN.1008982

Srivastava, S. (2017). The mitochondrial basis of aging and age-related disorders. Genes, 8(12). https://doi.org/10.3390/genes8120398

Sun, Y., Hu, X., Hu, G., Xu, C., & Jiang, H. (2015). Curcumin attenuates hydrogen peroxide-induced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells. Biological and Pharmaceutical Bulletin, 38(8), 1134–1141. https://doi.org/10.1248/bpb.b15-00012

Tinkerhess, M. J., Healy, L., Morgan, M., Sujkowski, A., Matthys, E., Zheng, L., & Wessells, R. J. (2012). The Drosophila PGC-1α homolog spargel modulates the physiological effects of endurance exercise. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0031633

Tsurumi, A., & Li, W. X. (2020). Aging mechanisms—A perspective mostly from Drosophila . Advanced Genetics (Vol. 1). https://doi.org/10.1002/ggn2.10026

Yu, G., & Hyun, S. (2021). Proteostasis-associated aging: lessons from a Drosophila model. Genes and Genomics, 43(1). https://doi.org/10.1007/s13258-020-01012-9

Zhang, Y., Li, Q., Niu, Y., Wei, K., Wang, X., Niu, B., & Zhang, L. (2023). Research progress on aging mechanism and drugs and the role of stem cells in anti-aging process. Experimental Gerontology, 179 (June), 112248. https://doi.org/10.1016/j.exger.2023.112248

Published
2024-03-30
Section
Articles
Abstract viewed = 147 times
PDF downloaded = 68 times