Prevalence of qacE AND qacE[delta]1 resistance genes in pseudomonas species isolates from hospitals in Benin City, Nigeria

Authors

  • Felix. A. Okunrobo General Hospital, Abudu, Edo State, Nigeria
  • Helen. O Ogefere Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, University of Benin, Benin City, Nigeria, and
  • Richard Omoregie Medical Microbiology Division, Medical Laboratory Services, University of Benin Teaching Hospital, Benin City, Nigeria

DOI:

https://doi.org/10.22225/ijbstm.2.2.2025.52-59

Keywords:

QacE, QacE[delta]l genes, biocides, resistance, pseudomonas species

Abstract

Background: The multi-drug efflux pump systems play a significant role in the mechanism of resistance to biocides in Pseudomonas species. This bacterium has been shown to harbor multi-drug transporter efflux systems genes involving QacE and QacE[delta]l, as do other gram negative bacteria. In Nigeria, the use of antimicrobial agents is unregulated, particularly the use of biocidal formulations both in health care facilities and for domestic purposes. Due to paucity of data on the distribution of qac genes in the health-care environment in Nigeria, this study aimed to determine the distribution of qacE and qacE[delta]1 genes among Pseudomonads–both aeruginosa and non-aeruginosa isolates, from clinical and environmental sources within hospitals in Benin City.

Method: A total of 1200 specimens consisting of 500 clinical (wound, urine, ear swabs, high vaginal and endo-cervical swabs, eye swabs, aspirates, catheter tips, sputum and throat swabs) and 700 environmental (sinks, floors and bench tops) were used for this study. All specimens were processed to recover Pseudomonads using cetrimide agar. The isolates were identified with biochemical tests and 16S rRNA. The presence of qacE and qacE[delta]1 genes was detected by PCR (polymerase chain reaction).

Result: Pseudomonas aeruginosa and non-aeruginosa isolates were recovered mostly from sinks and wounds. The prevalence of qacE and qacE[delta]1 genes did not differ significantly (p>0.05) between P. aeruginosa and their non-aeruginosa counterparts in both clinical and environmental isolates. In conclusion, we highlight the prevalence of qacE and qacE[delta]1 resistance genes in varying proportions among clinical and environmental pseudomonas species isolates in hospitals in Benin city, Nigeria

 

References

Adejobi, A., Ojo, O., Alaka, O., Odetoyin, B., and Onipede, A. (2021). Antibiotic resistance pattern of Pseudomonas spp. from patients in a tertiary hospital in South-West Nigeria. Germs, 11(2), 238.

Aika, I. N., and Enato, E. (2022). Antibiogram of clinical isolates from primary and secondary healthcare facilities: A step towards antimicrobial stewardship. PLOS Global Public Health, 2(12), e0000644

Angus, N.O., Kelechi, C.O., Nonye, T.U., Dave, U.A, and Ifeanyi, E. (2016) Health professionals’ knowledge about relative prevalence of hospital-acquired infections in Delta State of Nigeria. Pan African Medical Journal; 24(1)

Asinobi, I. N., Ekwochi, U., Edelu, B. O., Iheji, C. C., Onu, N. N. and Ndu, I. K. (2021). Bacterial isolates of surfaces in the neonatal intensive care unit of Enugu State University Teaching Hospital, Parklane, Enugu, and their antibiotic susceptibility patterns. Nigeria Journal of Medicine 30: 171 – 175

Boyce, J. M. (2023). Quaternary ammonium disinfectants and antiseptics: tolerance, resistance and potential impact on antibiotic resistance. Antimicrobial Resistance & Infection Control, 12(1), 32.

Clinical and Laboratory Standards-Institute. (2010). Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard. M07-A8. 8th ed. Wayne, PA, USA.

Davane, M., Suryawanshi, N., Pichare, A. and Nagoba, B. S. (2014). Pseudomonas aeruginosa from hospital environment. Journal of Microbiology and Infectious Diseases, 4(01):23-36

Druge, S., Ruiz, S., Vardon-Bounes, F., Grare, M., Labaste, F., Seguin, T., Fourcade, O., Minville, V., Conil, J.M. and Georges, B. (2019). Risk factors and the resistance mechanisms involved in Pseudomonas aeruginosa mutation in critically ill patients. Journal of intensive care., 7(1): 36.

El Zowalaty, M. E., Al Thani, A. A., Webster, T. J., El Zowalaty, A. E., Schweizer, H. P., Nasrallah, G. K., ... & Ashour, H. M. (2015). Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology, 10(10), 1683-1706.

Ezeador, C. O., Ejikeugwu, P. C., Ushie, S. N. and Agbakoba, N. R. (2020). Isolation, identification and prevalence of Pseudomponas aeruginosa isolates from clinical and environmental sources in Onitsha metropolis, Anambra State. Eurepean Journal of Medical and Health Sciences 2(2): doi: http//dx.doi.org/10.24018/ejmed.2020.2.2.188

Mehri I. , Yousra T., Imen D., Asma B. R., Abdennaceur H. and Maher G. (2013). Molecular identification and assessment of genetic diversity of fluorescent pseudomonades based on different polymerase chain reaction (PCR) methods. Journal of Microbial & Biochemical Technology., 7(19): 2103-2113

Garba, M. B., and Uche, L. B. (2019). Knowledge, attitude, and practice of hand washing among healthcare workers in a tertiary health facility in northwest Nigeria. Journal of Medicine in The Tropics, 21(2): 73.

Gnanadhas, D. P., Marathe, S. A., and Chakravortty, D. (2013). Biocides–resistance, cross-resistance mechanisms and assessment. Expert opinion on investigational drugs, 22(2), 191-206.

Helal, Z. H. and Khan, M. (2015). QacE and QacE[delta]1 genes and their correlation to antibiotics and biocides resistance Pseudomonas aeruginosa. American Journal of Biomedical Sciences 7(2): 52 – 62.

Hernández-Jiménez, P., López-Medrano, F., Fernández-Ruiz, M., Silva, J. T., Corbella, L., San-Juan, R., ... and Aguado, J. M. (2022). Risk factors and outcomes for multidrug resistant Pseudomonas aeruginosa infection in immunocompromised patients. Antibiotics, 11(11), 1459.

Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., and Winn, W. C. (2006). Koneman`s Color Atlas and Textbook of Diagnostic Microbiology. Sixth Edition, Lippincott Williams & Wilkins, Chapter 7

Kücken, D., Feucht, H. H. and Kaulfers, P. M. (2000). Association of qacE and qacE[delta]1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiology Letters, 183(1): 95-98

Lee, P. Y., Costumbrado, J., Hsu, C. Y., and Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments), (62), e3923.

Leitner, E., Zarfel, G., Luxner, J., Herzog, K., Pekard-Amenitsch, S., Hoenigl, M., Valentin, T., Feierl, G., Grisold, A. j., Hogenauer C., Sill, H., Krause, R. and Zollner-Schwetz, I. (2015). Contaminated handwashing sinks as the source of a clonal outbreak of KPC- 2-producing Klebsiella oxytoca on a hematology ward. Antimicrobial Agents and Chemotherapy 59(1):714 – 716.

Jia, Y., Lu, H., and Zhu, L. (2022). Molecular mechanism of antibiotic resistance induced by mono-and twin-chained quaternary ammonium compounds. Science of The Total Environment, 832, 155090.

Mahzounieh, M., Khoshnood, S., Ebrahimi, A., Habibian, S. and Yaghoubian, M. (2014). Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. isolated from burn patients. Jundishapur Journal of Natural Pharmaceutical Products 9(2): e15402

Mohammadi, M., Seifi, A., Mokhtaryan, M., Ghahan, A., Ghaderkhani, S., Mohammadnejad, E., and Gheshlagh, R. G. (2020). Device-associated Infections (DAIs) in ICU: Using new CDC/NHSN definitions. Indian Journal of Forensic Medicine & Toxicology, 14(2)

Ogbolu, D. O. (2013).Impact of ESBLs and CREs – the Nigerian experience. APUA News Letter 31(2): 15 – 16

Okonofua, F.,Aigbogun, O., Nwandu, C., Kanguru, L, and Hussein J. (2012). Assessment of infection control practices in maternity units in Southern Nigeria International Journal for Quality in Health Care, Volume 24, Issue 6.

Otter, J. A., Yezli, S., Salkeld, J. A. G. and French, G. L. (20.13). Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. American Journal of Infection Control. 41(5 Suppl):6–11.

Paulsen, I.T., Littlejohn, T.G., Radstro m, P., Sundstro m, L., Sko ld, O.,

Salman, Z. J., Salman, J. A. S., and Aziz, R. A. (2024). Determination Of Multi Drug Resistance (MDR) Pseudomonas Aeruginosa Isolated From Clinical Sources. Journal of the College of Basic Education

Rajabnia, R., Asgharpour, F., Ferdosi, S. E., Khalilian, M., Norkhomami, S., SHAFII, M., and Moulana, Z. (2013). Class 1 integron in Pseudomonas aeruginosa isolates from different places and devices of ICU in Babol, Iran.

Reynolds, D., and Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs, 81(18): 2117-2131.

Rodrigues, D. O., Peixoto, L, da P., Barros, E. T. M., Guimaraes, J. R., Gontiji, B. C., Almeida, J. L., de Azevedo, L. G., Lima, J. C. O. and Camara, D. S. (2020). Epidemiology of bacterial contamination of inert hospital surfaces and equipment in critical and non-critical care units: a Brazilian study. Microbiology Research Journal International 30(7): 31 – 43

Rutala, W. A. and Weber, D. J. (2019) Best practices for disinfection of noncritical environmental surfaces and equipment in healthcare facilities: a bundle approach. American Journal of Infection Control (47): A96–A105.

Spilker, T.,Coenye, T.,Vandamme, P.,LiPuma, J.J. (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of Clinical Microbiology. 42, 2074-2079

Suleyman, G., Alangaden, G. and Bardossy, A. C. (2018). The role of environmental contamination in the transmission of nosocomial pathogens and healthcare-associated infections. Current Infectious Disease Reports. 20(6):12. doi: 10.1007/s11908-018-0620-2.

Tobin, E. A., Samuel, S. O., Inyang, N. J., Adewuyi, G. M. and Nmema, E. E. (2021). Bacteriological profile and antibiotic sensitivity patterns in clinical isolates from the out-patient departments of a tertiary hospital in Nigeria. Nigeria Journal of Clinical Practice 24: 1225 - 1233.

Wang, C., Cai, P., Guo, Y., and Mi, Z. (2007). Distribution of the antiseptic-resistance genes qacE[delta]1 in 331 clinical isolates of Pseudomonas aeruginosa in China. Journal of Hospital Infection, 66(1), 93-95.

Wales, A. D., and Davies, R. H. (2015). Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4(4): 567-604.

Vingataramin, L., and Frost, E. H. (2015). A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques, 58(3), 120-125

Downloads

Published

2025-09-25

Issue

Section

Articles