Phenotypical analysis of Chloramphenicol toxicity in Drosophila
DOI:
https://doi.org/10.22225/ijbstm.2.1.2025.19-26Keywords:
Chloramphenicol, toxicity, fruit fly, phenotype, sod1, sod2, tom40, indyAbstract
Background: Chloramphenicol is a broad-spectrum antibiotic with serious side effects, including aplastic anemia and gray baby syndrome. While Drosophila melanogaster is a cost-effective and genetically relevant model for toxicological studies, its response to chloramphenicol remains unexamined. This study explores the toxic effects of chloramphenicol in Drosophila to provide insights into its broader biological impact.
Methods: This study aims to analyze the toxicity of chloramphenicol in terms of developmental toxicity, locomotor activity, morphology and gene expression status (sod1, sod2, tom40, and indy) in Drosophila melanogaster. The study was conducted on Oregon-R strain D. melanogaster larvae fed with chloramphenicol at concentrations of 625; 1,875; 3,125; and 4,375 ppm.
Results: Developmental toxicity assay revealed that chloramphenicol exposure significantly delayed developmental progression, as evidenced by a prolonged transition from larval to pupal stages at concentrations of 3,125 and 4,375 ppm. However, no significant alterations were observed in locomotor activity or morphological characteristics. Moreover, chloramphenicol exposure in D. melanogaster appeared to exert toxic effects by significantly altering the expression of sod1, sod2, and tom40, while having no detectable impact on indy gene expression.
Conclusion: High concentrations of chloramphenicol significantly impair larval development in D. melanogaster and alter gene expression profiles. However, adult flies exhibit no observable morphological or locomotor abnormalities compared to controls. These findings highlight that Drosophila larvae are susceptible to chloramphenicol toxicity, making it an ideal phase for assessing the detrimental effects of chloramphenicol.
References
Abdollahi, M., & Mostafalou, S. (2014). Chloramphenicol. In Encyclopedia of Toxicology (3 ed.). Elsevier Inc.
Asfa, N., Widianto, A. S., Pratama, M. K. A., Rosa, R. A., Mu’arif, A., Yulianty, R., & Nainu, F. (2023). Curcumin-mediated gene expression changes in Drosophila melanogaster. Pharmacy Education, 23(2), 84-91.
Cassar, M., Issa, A.-R., Riemensperger, T., Petitgas, C., Rival, T., Coulom, H., Iché-Torres, M., Han, K.-A., & Birman, S. (2015). A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila. Human molecular genetics, 24(1), 197-212.
Cho, Y., Park, C. M., Heo, Y.-J., Park, H.-B., & Kim, M.-S. (2024). Drosophila melanogaster as potential alternative animal model for evaluating acute inhalation toxicity. The Journal of Toxicological Sciences, 49(2), 49-53.
Czeizel, A. E., Rockenbauer, M., Sørensen, H. T., & Olsen, J. (2000). A population-based case–control teratologic study of oral chloramphenicol treatment during pregnancy. European journal of epidemiology, 16, 323-327.
EFSA. (2014). Scientific Opinion on Chloramphenicol in food and feed. EFSA Journal, 12(11), 3907.
Eleutherio, E. C. A., Magalhães, R. S. S., de Araújo Brasil, A., Neto, J. R. M., & de Holanda Paranhos, L. (2021). SOD1, more than just an antioxidant. Archives of Biochemistry and Biophysics, 697, 108701.
Eric, S. (2007). The Comprehensive Pharmacology Reference: Chloramphenicol. Elsevier Inc.
Grayson, M. L., Cosgrove, S., Crowe, S., Hope, W., McCarthy, J., Mills, J., Mouton, J. W., & Paterson, D. (2017). Kucers' The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, -Three Volume Set. CRC Press.
Gude, N. (2020). An Overview on Gray Baby Syndrome. Journal of Endocrine Disorders & Surgery, 5(4).
Humphries, A. D., Streimann, I. C., Stojanovski, D., Johnston, A. J., Yano, M., Hoogenraad, N. J., & Ryan, M. T. (2005). Dissection of the mitochondrial import and assembly pathway for human Tom40. Journal of Biological Chemistry, 280(12), 11535-11543.
Ighodaro, O., & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria journal of medicine, 54(4), 287-293.
Khaerani, M., Chaeratunnisa, R., Salsabila, A., Asbah, A., Asri, R. M., Shiratsuchi, A., & Nainu, F. (2024). Curcumin-mediated alleviation of dextran-induced leaky gut in Drosophila melanogaster. Narra J, 4(1), e743. https://doi.org/10.52225/narra.v4i1.743
Klingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics, 11(9), 623-635.
Krittika, S., & Yadav, P. (2019). An overview of two decades of diet restriction studies using Drosophila. Biogerontology, 20(6), 723-740.
Liu, W., Duan, X., Fang, X., Shang, W., & Tong, C. (2018). Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy, 14(8), 1293-1309.
Maluf, E., Hamerschlak, N., Cavalcanti, A. B., Júnior, Á. A., Eluf-Neto, J., Falcão, R. P., Lorand-Metze, I. G., Goldenberg, D., Santana, C. L., & Rodrigues, D. d. O. W. (2009). Incidence and risk factors of aplastic anemia in Latin American countries: the LATIN case-control study. Haematologica, 94(9), 1220.
Merkey, A. B., Wong, C. K., Hoshizaki, D. K., & Gibbs, A. G. (2011). Energetics of metamorphosis in Drosophila melanogaster. Journal of insect physiology, 57(10), 1437-1445.
Mishra, D., Kannan, K., Meadows, K., Macro, J., Li, M., Frankel, S., & Rogina, B. (2021). INDY—From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. Frontiers in Aging, 2, 782162.
Mudjahid, M., Nainu, F., Utami, R. N., Sam, A., Marzaman, A. N. F., Roska, T. P., Asri, R. M., Himawan, A., Donnelly, R. F., & Permana, A. D. (2022). Enhancement in Site-Specific Delivery of Chloramphenicol Using Bacterially Sensitive Microparticle Loaded Into Dissolving Microneedle: Potential For Enhanced Effectiveness Treatment of Cellulitis. ACS Applied Materials & Interfaces, 14(51), 56560-56577. https://doi.org/10.1021/acsami.2c16857
Oong, G. C., & Tadi, P. (2023). Chloramphenicol. StatPearls Publishing.
Paez, P. L., Becerra, M. C., & Albesa, I. (2008). Chloramphenicol induced oxidative stress in human neutrophils. Basic & clinical pharmacology & toxicology, 103(4), 349-353.
Panchal, K., & Tiwari, A. K. (2017). Drosophila melanogaster “a potential model organism” for identification of pharmacological properties of plants/plant-derived components. Biomedicine & Pharmacotherapy, 89, 1331-1345.
Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev, 63(2), 411-436. https://doi.org/10.1124/pr.110.003293
Periasamy, A., Mitchell, N., Zaytseva, O., Chahal, A. S., Zhao, J., Colman, P. M., Quinn, L. M., & Gulbis, J. M. (2022). An increase in mitochondrial TOM activates apoptosis to drive retinal neurodegeneration. Scientific Reports, 12(1), 21634.
Pitt, A. S., & Buchanan, S. K. (2021). A biochemical and structural understanding of TOM complex interactions and implications for human health and disease. Cells, 10(5), 1164.
Pratama, M. R., Wahyudin, E., Putri, T. Z., Hardiyanti, W., Fatiah, D., Chaeratunnisa, R., Bapulo, N. N., Latada, N. P., Mudjahid, M., & Nainu, F. (2024). A fruit fly-based approach to unraveling enteropathy-causing pharmaceuticals. Narra J, 4(2), e898.
Rand, M. D. (2010). Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicology and teratology, 32(1), 74-83.
Rand, M. D., Montgomery, S. L., Prince, L., & Vorojeikina, D. (2014). Developmental toxicity assays using the Drosophila model. Current protocols in toxicology, 59(1), 1.12. 11-11.12. 20.
Rolff, J., Johnston, P. R., & Reynolds, S. (2019). Complete metamorphosis of insects. Philosophical Transactions of the Royal Society B, 374(1783), 20190063.
Rumata, N. R., Purwaningsih, D., Asbah, A., As'ad, M. F., Chadran, D., Emran, T. B., & Nainu, F. (2023). Phenotypical and molecular assessments on the pharmacological effects of curcumin in Drosophila melanogaster. Narra J, 3(2), e117. https://doi.org/10.52225/narra.v3i2.117
Slykerman, R. F., Neumann, D., Underwood, L., Hobbs, M., & Waldie, K. E. (2023). Age at first exposure to antibiotics and neurodevelopmental outcomes in childhood. Psychopharmacology, 240(5), 1143-1150.
Suárez-Rivero, J. M., Pastor-Maldonado, C. J., Povea-Cabello, S., Álvarez-Córdoba, M., Villalón-García, I., Talaverón-Rey, M., Suárez-Carrillo, A., Munuera-Cabeza, M., & Sánchez-Alcázar, J. A. (2021). Mitochondria and antibiotics: for good or for evil? Biomolecules, 11(7), 1050.
Sultan, R., Stampas, A., Goldberg, M., & Baker, N. (2001). Drug resistance of bacteria commensal with Drosophila melanogaster in laboratory cultures. Drosophila Information Service, 84, 175-180.
Syed, M. A., Atta Ur Rahman, A., Shah Syed, M. N., & Memon, N. M. (2021). The relationship of drug therapy to aplastic anemia in Pakistan: a hospital-based case control study. Therapeutics and Clinical Risk Management, 903-908.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Aditya Satya Pratama, Aizia Risty Rizal, Nurhidayah Ramly, Gimas Fatir Bijaksana, Jihan Atiqah Permatasari, Muhammad Akbar Bahar, Nadila Pratiwi Latada, Mukarram Mudjahid, Risfah Yulianty, Nur Inda Yanti, Firzan Nainu

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
