Biopesticides to Control Anthracnose Disease in Chili Pepper (Capsicum annuum L.): A Review
Keywords:
biopesticides, anthracnose disease, chili pepperAbstract
Anthracnose disease is one of the most destructive diseases affecting chili pepper (Capsicum annuum L.). The impact of anthranose on production worldwide results in significant yield and quality losses during both pre-harvest and post-harvest stages. Control of this disease has relied use traditional technic with synthetic fungicides. Synthetic fungicides have caused pathogen resistance, environmental contamination, and food safety concerns. Therefore, biopesticides are considered an environmentally friendly and sustainable alternative. This review aims to critically summarize recent studies published between 2015 and 2025 on the application of biopesticides to controlling anthracnose disease in chili pepper. Scientific literature was collected from major databases, including Scopus, ScienceDirect, and Google Scholar. The review highlights the effectiveness of biopesticides from microbial and botanical pesticides. Microbial pesticides such as Trichoderma spp., Bacillus, and Pseudomonas spp. Contribute to disease suppression by producing antimicrobial metabolites and inducing systemic resistance in host plants. Botanical pesticides based on plant extracts and essential oils have antifungal activity by inhibiting spore germination, disrupting fungal cell structures, and antimicrobial chemical compounds. Although biopesticides potential to control anthracnose disease, but remains inconsistent due to environmental factors and formulation constraints. Therefore, improved formulation technologies and integration into integrated disease management strategies are essential to enhance their reliability and adoption in sustainable chili production systems.
References
[1] Barchenger, D. W., Lamour, K. H., & Bosland, P. W. (2018). Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Frontiers in Plant Science, 9, 1–16. https://doi.org/10.3389/fpls.2018.00628
[2] Park, M., Kim, S., Bae, S., & Im, M. (2024). International pesticide monitoring data for safety management. Toxics, 2, 1–11.
[3] Mohd Ali, M., Khalid, N. I., Wondi, M. H., Haris, N. I. N., & Megat Ahmad Azman, P. N. (2025). Exploring the nutritional values, volatile compounds, health benefits, and potential food products of chilli (Capsicum annuum): A comprehensive review. Food Chemistry, 490, 145091. https://doi.org/10.1016/j.foodchem.2025.145091
[4] Yanty, D. P., Trizelia, Darnetty, & Trisno, J. (2024). Anthracnose disease attacks chili plants in West Sumatra. International Journal of Advanced Science, Engineering and Information Technology, 14(5), 1683–1687. https://doi.org/10.18517/ijaseit.14.5.11266
[5] Islam, T., Danishuddin, Tamanna, N. T., Matin, M. N., Barai, H. R., & Haque, M. A. (2024). Resistance mechanisms of plant pathogenic fungi to fungicides, environmental impacts of fungicides, and sustainable solutions. Plants, 13(19), 1–27. https://doi.org/10.3390/plants13192737
[6] Khursheed, A., et al. (2022). Plant-based natural products as potential eco-friendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations, and regulatory aspects. Microbial Pathogenesis, 173, 105854. https://doi.org/10.1016/j.micpath.2022.105854
[7] Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1–15. https://doi.org/10.3390/plants10061185
[8] Boukaew, S., Chumkaew, K., Petlamul, W., Srinuanpan, S., Nooprom, K., & Zhang, Z. (2024). Biocontrol effectiveness of Trichoderma asperelloides SKRU-01 and Trichoderma asperellum NST-009 on postharvest anthracnose in chili pepper. Food Control, 163, 110490. https://doi.org/10.1016/j.foodcont.2024.110490
[9] Zhong, J., Wu, X., Guo, R., Li, J., Li, X., & Zhu, J. (2024). Biocontrol potential of Bacillus velezensis HG-8-2 against postharvest anthracnose on chili pepper caused by Colletotrichum scovillei. Food Microbiology, 124, 104613. https://doi.org/10.1016/j.fm.2024.104613
[10] Darmadi, A. A. K., Suriani, N. L., Ginantra, I. K., & Sudirga, S. K. (2022). Effectiveness of cinnamon leaf extract to control anthracnose disease on large chilies in Bali, Indonesia. Biodiversitas, 23(6), 2859–2864. https://doi.org/10.13057/biodiv/d230611
[11] Chauhan, A., & Yadav, V. (2022). In vitro evaluation of plant extracts and fungicides against Colletotrichum capsici causing anthracnose disease of chilli. [Journal], 14(4), 720–725.
[12] Dantas, T. dos S., Machado, J. C. B., Ferreira, M. R. A., & Soares, L. A. L. (2025). Bioactive plant compounds as alternatives against antifungal resistance in Candida strains. Pharmaceutics, 17(6), 1–25. https://doi.org/10.3390/pharmaceutics17060687
[13] Ruangwong, O. U., Pornsuriya, C., Pitija, K., & Sunpapao, A. (2021). Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi, 7(4). https://doi.org/10.3390/jof7040276
[14] Law, C. X., Hashim, N., Ismail, S. I., Jahari, M., & Al Riza, D. F. (2025). A review on anthracnose disease caused by Colletotrichum spp. in fruits and advances in control strategies. International Journal of Food Microbiology, 442, 111397. https://doi.org/10.1016/j.ijfoodmicro.2025.111397
[15] Rizki, A. Z., Choliq, F. A., & Martosudiro, M. (2021). Antifungal effects of plant extracts on Colletotrichum gloeosporioides in chilli pepper (Capsicum frutescens L.). Journal of Tropical Plant Protection, 2(2), 68–74. https://doi.org/10.21776/ub.jtpp.2021.002.2.5
[16] Begum, S., & Nath, P. S. (2015). Eco-friendly management of anthracnose of chilli caused by Colletotrichum capsici. Journal of Applied and Natural Science, 7(1), 119–123. https://doi.org/10.31018/jans.v7i1.574
[17] Hodiyah, I., Natawijaya, D., Hartini, E., Setiawan, W., & Meylani, V. (2023). The effectiveness of botanical pesticides as antifungal on chili (Capsicum annuum L.) disease. International Journal of Design & Nature and Ecodynamics, 18(1), 183–188. https://doi.org/10.18280/ijdne.180122
[18] Zhong, J., Bai, X. Y., Zhang, Z., Li, X. G., & Zhu, J. Z. (2025). Biocontrol potential of Streptomyces lactacystinicus producing volatile organic compounds against postharvest anthracnose of chili pepper. Postharvest Biology and Technology, 230, 113758. https://doi.org/10.1016/j.postharvbio.2025.113758
[19] Kumar, A., Rabha, J., & Jha, D. K. (2021). Antagonistic activity of lipopeptide-biosurfactant producing Bacillus subtilis AKP against Colletotrichum capsici. Biocatalysis and Agricultural Biotechnology, 36, 102133. https://doi.org/10.1016/j.bcab.2021.102133
[20] Qiao, J., Zhang, R., Liu, Y., & Liu, Y. (2023). Evaluation of the biocontrol efficiency of Bacillus subtilis wettable powder on pepper root rot caused by Fusarium solani. Pathogens, 12(2). https://doi.org/10.3390/pathogens12020225
[21] Suprapta, D. N. (2022). Biocontrol of anthracnose disease on chili pepper using a formulation containing Paenibacillus polymyxa C1. Frontiers in Sustainable Food Systems, 5, 1–7. https://doi.org/10.3389/fsufs.2021.782425
[22] Kim, S. H., Lee, Y., Balaraju, K., & Jeon, Y. (2023). Evaluation of Trichoderma atroviride and Trichoderma longibrachiatum as biocontrol agents in controlling red pepper anthracnose in Korea. Frontiers in Plant Science, 14, 1–15. https://doi.org/10.3389/fpls.2023.1201875
[23] Liotti, R. G., da Silva Figueiredo, M. I., & Soares, M. A. (2019). Streptomyces griseocarneus R132 controls phytopathogens and promotes the growth of pepper (Capsicum annuum). Biological Control, 138, 104065. https://doi.org/10.1016/j.biocontrol.2019.104065
[24] Sutarman, Setiorini, T., Li’aini, A. S., Purnomo, & Rahmat, A. (2022). Evaluation of Trichoderma asperellum effect toward anthracnose pathogen activity on red chili (Capsicum annuum L.) as an eco-friendly pesticide. International Journal of Environmental Science and Development, 13(4), 131–137. https://doi.org/10.18178/ijesd.2022.13.4.1383
[25] Paradisa, Y. B., Wahyuni, Mulyaningsih, E. S., Perdani, A. Y., & Prianto, A. H. (2021). Evaluation of plant-based pesticide containing neem extract (Azadirachta sp.) to control anthracnose growth in chili fruits. Jurnal Fitopatologi Indonesia, 16(3), 112–122. https://doi.org/10.14692/jfi.16.3.112-122
[26] Rony, M. A. R., Hosen, S., & Bashar, M. (2021). Efficacy of chemical fungicides and plant extracts against anthracnose pathogens of Capsicum frutescens L. Bangladesh Journal of Botany, 50(2), 437–440. https://doi.org/10.3329/BJB.V50I2.54104
[27] Sukdee, S. (2023). Antifungal activity of plant extracts against Colletotrichum capsici causal agent of chili anthracnose. Rattana Journal of Science and Technology, 5(1), 1–8.
[28] Ibrahim, N. F., Yin, W. K. A. H., Saleh, N. U. R. H., Ahmad, F. T., & Lob, S. (2020). Colletotrichum species in harvested chili. [Journal], 49, 241–246.
[29] Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 1–19. https://doi.org/10.3389/fpls.2019.00845
[30] Costa, L. T. M., Smagghe, G., Viteri Jumbo, L. O., Santos, G. R., Aguiar, R. W. S., & Oliveira, E. E. (2025). Selective actions of plant-based biorational insecticides: Molecular mechanisms and reduced risks to non-target organisms. Current Opinion in Environmental Science & Health, 44, 100601. https://doi.org/10.1016/j.coesh.2025.100601
[31] Gupta, I., Singh, R., Muthusamy, S., Sharma, M., Grewal, K., Harminder Pal Singh, H. P., & Batish, D. R. (2023). Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints. Plants, 12(16), 1–29. https://doi.org/10.3390/plants12162916
[32] Zhao, A., Sun, J., & Liu, Y. (2023). Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13, 1–23. https://doi.org/10.3389/fcimb.2023.1137947
[33] Bartal, A., Huynh, T., Kecskeméti, A., Vörös, M., Kedves, O.,Varga, M., Kredics, L., Vágvölgyi, C., Szekeres, A, & Allaga, H. (2023). Identification of surfactin-type biosurfactants produced by Bacillus species isolated from the rhizosphere of vegetables. Molecules, 28(3), 1–15. https://doi.org/10.3390/molecules28031172
[34] Singh, S., Singh, A.K., Pradhan, B., Tripathi, S., Kumar, K.S., Chand, S., Prangya Ranjan Rout, P.R., Shahid, M.K.(2024). Harnessing Trichoderma mycoparasitism as a tool in the management of soil-dwelling plant pathogens. Microbial Ecology, 87(1). https://doi.org/10.1007/s00248-024-02472-2
[35] Elhamouly, N. A., Hewedy, O.A., Zaitoon, A., Miraples, A., Elshorbagy, O.T., Hussien, S., Tahan, A.E., & Peng, D. (2022). The hidden power of secondary metabolites in plant–fungi interactions and sustainable phytoremediation. Frontiers in Plant Science, 13, 1–21. https://doi.org/10.3389/fpls.2022.1044896
[36] Jisha, M. S., Linu, M. S., & Sreekumar, J. (2018). Induction of systemic resistance in chilli (Capsicum annuum L.) by Pseudomonas aeruginosa against anthracnose pathogen Colletotrichum capsici. Journal of Tropical Agriculture, 56(2), 153–166.
[37] Madlhophe, S., Ogugua, U. V., Makhubu, F. N., & Figlan, S. (2025). Use of biological control agents for managing fungal pathogens in Solanaceae crops: Progress and future perspectives. Discover Applied Sciences, 7(1). https://doi.org/10.1007/s42452-025-06500-9
[38] Tyagi, A., Tamang, T.L., Kashtoh, H., Mir, R.A., Mir, Z.A., Manzoor, S., Manzar, N., Gani, G., Vishwakarma, S.K., Almalki, M.A., & Ali, S. (2024). A review on biocontrol agents as a sustainable approach for crop disease management: Applications, production, and future perspectives. Horticulturae, 10(8). https://doi.org/10.3390/horticulturae10080805
