Physiological Responses of Bali Cattle Associated with Temperature-Humidity Index under Tropical Environmental Conditions
Keywords:
Bali Cattle Farming, physiological response, heat stress, THI, tropical environmentAbstract
The temperature-humidity index (THI) is an indicator that combines air temperature and humidity to assess the level of comfort or heat stress in livestock. This study aims to evaluate the relationship between the physiological response of Bali cattle to THI in tropical areas. A total of 20 Bali cattle (10 males and 10 females) were observed in the morning and afternoon. Microclimatic data (temperature, humidity, THI) and physiological responses, including rectal temperature (RT), skin surface temperature (ST), respiratory rate (RR), and heart rate (HR), were analysed using the General Linear Model (GLM) with repeated measures and linear regression. The results showed significant differences (P<0.01) between morning and afternoon. THI increased from 77.34 ± 0.82 (mild heat stress) in the morning to 86.04 ± 1.20 (severe heat stress) in the afternoon. Physiological responses increased significantly in the afternoon, with males showing higher RT and RR than females. Regression analysis indicated that THI was closely related to RT (R² = 0.8822), RR (R² = 0.8065), and HR (R² = 0.9454), while ST showed a moderate relationship (R² = 0.5503). It can be concluded that Bali cattle are sensitive to tropical climate fluctuations, and THI can be used as an indicator to assess heat stress levels in Bali cattle.
References
[1] Gupta, S., Sharma, A., Joy, A., Dunshea, F. R., & Chauhan, S. S. (2022). The impact of heat stress on the immune status of dairy cattle and strategies to ameliorate the negative effects. Animals, 13(1), 107. https://doi.org/10.3390/ani13010107
[2] Rashamol, V. P., Sejian, V., Bagath, M., Krishnan, G., Archana, P. R., & Bhatta, R. (2018). Physiological adaptability of livestock to heat stress: An updated review. Journal of Animal Behaviour and Biometeorology, 6(3), 62–71. https://doi.org/10.31893/2318-1265jabb.v6n3p62-71
[3] Oke, O. E., Uyanga, V. A., Iyasere, O. S., Oke, F. O., Majekodunmi, B. C., Logunleko, M. O., Abiona, J. A., Nwosu, E. U., Abioja, M. O., Daramola, J. O., & Onagbesan, O. M. (2021). Environmental stress and livestock productivity in hot-humid tropics: Alleviation and future perspectives. Journal of Thermal Biology, 100, 103077. https://doi.org/10.1016/j.jtherbio.2021.103077
[4] Slayi, M., & Jaja, I. F. (2025). Strategies for mitigating heat stress and their effects on behavior, physiological indicators, and growth performance in communally managed feedlot cattle. Frontiers in Veterinary Science, 12. https://doi.org/10.3389/fvets.2025.1513368
[5] Saili, T. (2020). Production and reproduction performances of Bali cattle in Southeast Sulawesi-Indonesia. IOP Conference Series: Earth and Environmental Science, 465(1), 12004. https://doi.org/10.1088/1755-1315/465/1/012004
[6] Widyas, N., Widi, T. S. M., Prastowo, S., Sumantri, I., Hayes, B. J., & Burrow, H. M. (2022). Promoting sustainable utilization and genetic improvement of Indonesian local beef cattle breeds: A review. Agriculture, 12(10), 1566. https://doi.org/10.3390/agriculture12101566 Hidayat, J., Panjaitan, T., Dahlanuddin, Harper, K., & Poppi, D. (2023).
[7] Utilising locally based energy supplements in leucaena and corn stover diets to increase the average daily gain of male Bali cattle and the income of smallholder farmers. Animal Production Science, 64(1), AN23217. https://doi.org/10.1071/AN23217
[8] Sukandi, S., Rahardja, D. P., Sonjaya, H., Hasbi, H., Baco, S., Gustina, S., & Adiputra, K. D. D. (2023). Effect of heat stress on the physiological and hematological profiles of horned and polled Bali cattle. Advances in Animal and Veterinary Sciences, 11(6), 893–902. https://dx.doi.org/10.17582/journal.aavs/2023/11.6.893.902
[9] Lakhani, P., Kumar, P., Lakhani, N., & Alhussien, M. N. (2018). The influence of tropical thermal stress on the seasonal and diurnal variations in the physiological and oxidative status of Karan Fries heifers. Biological Rhythm Research, 51(6), 837–850. https://doi.org/10.1080/09291016.2018.1548877
[10] Michael, P., Cruz, C. R. de, Nor, N. M., Jamli, S., & Goh, Y. M. (2021). The potential of using temperate–tropical crossbreds and agricultural by-products, associated with heat stress management for dairy production in the tropics: A review. Animals, 12(1), 1. https://doi.org/10.3390/ani12010001
[11] McLean, J. A., Downie, A. J., Jones, C. D. R., Stombaugh, D. P., Glasbey, C. A. (1973). Thermal adjustments of steers (Bos taurus) to abrupt changes in environmental temperature. The Journal of Agricultural Science, 100(2), 305-314. https://doi.org/10.1017/S0021859600033451
[12] Santoso, K., Audona, R., Komariah, K., Seminar, K. B., & Ulum, M. F. (2023). Innovative barn cattle for microclimate management through the misting system. Buletin Peternakan, 47(4), 207–214. https://doi.org/10.21059/buletinpeternak.v47i4.79464
[13] Bulitta, F. S., Aradom, S., & Gebrensenbet, G. (2015). Effect of transport time of up to 12 hours on the welfare of cattle and bulls. Journal of Service Science and Management, 8, 161–182. https://doi.org/10.4236/jssm.2015.82019
[14] Dzivenu, C. C. E., Mrode, R., Oyieng, E., Komwihangilo, E., Lyatuu, E., Msutta, G., Ojango, J. M. K., & Okeyo, A. M. (2020). Evaluating the impact of heat stress as measured by Temperature-Humidity Index (THI) on test-day milk yield of smallholder dairy cattle in a Sub-Saharan African climate. Livestock Science. 242, 2–7. https://doi.org/10.1016/j.livsci.2020.104314
[15] Ramadan, Z., Utamy, R. F., Hasbi, H., Ako, A., Maruddin, F., Niode, V., Rahmadi, A., & Putri, I. B. (2025). Economic feasibility and growth performance of Holstein Friesian calves fed whey-dangke fortified green calf starter. American Journal of Animal and Veterinary Sciences, 20(2), 159–170. https://doi.org/10.3844/ajavsp.2025.159.170
[16] Adiputra, K. D. D., Sukandi, S., Sonjaya, H., Hasbi, H., Baco, S., & Erni, N. (2025). Thermal tolerance of horned and polled Bali cattle to high ambient temperature and exercise provision. Journal of Agriprecision & Social Impact, 2(1). https://doi.org/10.62793/japsi.v2i1.48
[17] Zeng, J., Cai, J., Wang, D., Liu, H., Sun, H., & Liu, J. (2023). Heat stress affects dairy cow health status through blood oxygen availability. Journal of Animal Science and Biotechnology, 14(1), 112. https://doi.org/10.1186/s40104-023-00915-3
[18] Giannone, C., Bovo, M., Ceccarelli, M., Torreggiani, D., & Tassinari, P. (2023). Review of the heat stress-induced responses in dairy cattle. Animals, 13(22), 3451. https://doi.org/10.3390/ani13223451
[19] Vilela, R. A., Júnior, J. de B. L., Jacinto, M. A. C., Barbosa, A. V. C., Pantoja, M. H. de A., Oliveira, C. M. C., & Garcia, A. R. (2022). Dynamics of thermolysis and skin microstructure in water buffaloes reared in a humid tropical climate—A microscopic and thermographic study. Frontiers in Veterinary Science, 9, 871206. https://doi.org/10.3389/fvets.2022.871206
[20] Shephard, R. W., & Maloney, S. K. (2023). A review of thermal stress in cattle. Australian Veterinary Journal, 101(11), 417–429. https://doi.org/10.1111/avj.13275 Shephard, R. W., & Maloney, S. K. (2023). A review of thermal stress in cattle. Australian Veterinary Journal, 101(11), 417–429. https://doi.org/10.1111/avj.13275
[21] Putra, T. D., Panjono, P., Bintara, S., Widayati, D. T., Baliarti, E., & Putra, B. (2021). Characteristics of skin coat as well as the physiological status of F1 crossing Bali (Bos sondaicus) × Angus (Bos taurus) for early identification of adaptability in a tropical environment. MOJ Ecology & Environmental Sciences, 6(3), 82–86. https://doi.org/10.15406/mojes.2021.06.00219
[22] Schmeling, L., Thurner, S., Erhard, M., & Rauch, E. (2022). Physiological and behavioral reactions of Simmental dairy cows to increasing heat load on pasture. Ruminants, 2(2), 157–172. https://doi.org/10.3390/ruminants2020010
[23] Polsky, L., & von Keyserlingk, M. A. G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645–8657. https://doi.org/10.3168/jds.2017-1265
[24] Yosi, F., Prajoga, S. B. K., & Natawiria, E. M. (2019). Heat tolerance identification on adult Madura breed cow according to the Rhoad and Benezra coefficient. Ecodevelopment Journal, 2(2), 73–76. https://doi.org/10.24198/ecodev.v2i2.39107
[25] Abduch, N. G., Pires, B. V., Souza, L. L., Vicentini, R. R., Zadra, L. E. F., Fragomeni, B. O., Silva, R. M. O., Baldi, F., Paz, C. C. P., & Stafuzza, N. B. (2022). Effect of thermal stress on thermoregulation, hematological, and hormonal characteristics of Caracu beef cattle. Animals, 12(24), 3473. https://doi.org/10.3390/ani12243473
[26] Morrell, J. M. (2020). Heat stress and bull fertility. Theriogenology, 153, 62–67. https://doi.org/10.1016/j.theriogenology.2020.05.014
[27] Fernández-Peña, C., Reimúndez, A., Viana, F., Arce, V. M., & Señarís, R. (2023). Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Frontiers in Endocrinology, 14, 1093376. https://doi.org/10.3389/fendo.2023.1093376
[28] Levine, R. L., Verzuh, T. L., Mathewson, P. D., Porter, W. P., Kroger, B., & Monteith, K. L. (2025). Sex-specific trade-offs influence thermoregulation under climate change. Ecology, 106(6), e70138. https://doi.org/10.1002/ecy.70138
[29] Dos Santos, M. M., Souza-Junior, J. B. F., Dantas, M. R. T., & de Macedo Costa, L. L. (2021). An updated review on cattle thermoregulation: Physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environmental Science and Pollution Research, 28(24), 30471–30485. https://doi.org/10.1007/s11356-021-14077-0
[30] Idris, M., Uddin, J., Sullivan, M., McNeill, D. M., & Phillips, C. J. C. (2021). Non-invasive physiological indicators of heat stress in cattle. Animals, 11(1), 71. https://doi.org/10.3390/ani11010071
[31] Wang, J., Li, J., Wang, F., Xiao, J., Wang, Y., Yang, H., Li, S., & Cao, Z. (2020). Heat stress on calves and heifers: A review. Journal of Animal Science and Biotechnology, 11(79), 1–8. https://doi.org/10.1186/s40104-020-00485-8
[32] Habeeb, A. A., Gad, A. E., & Atta, M. A. (2018). Temperature-humidity indices as indicators of heat stress of climatic conditions with relation to production and reproduction of farm animals. International Journal of Biotechnology and Recent Advances, 1(1), 35–50. https://doi.org/10.18689/ijbr-1000107
[33] Kim, W. S., Lee, J. S., Jeon, S. W., Peng, D. Q., Kim, Y. S., Bae, M. H., Jo, Y. H., & Lee, H. G. (2018). Correlation between blood, physiological, and behavioral parameters in beef calves under heat stress. Asian-Australasian Journal of Animal Sciences, 31(6), 919–925. https://doi.org/10.5713/ajas.17.0545
[34] Bun, C., Watanabe, Y., Uenoyama, Y., Inoue, N., Ieda, N., Matsuda, F., Tsukamura, H., Kuwahara, M., Maeda, K. I., Ohkura, S., & Pheng, V. (2018). Evaluation of heat stress response in crossbred dairy cows under tropical climate by analysis of heart rate variability. The Journal of Veterinary Medical Science, 80(1), 181–185. https://doi.org/10.1292/jvms.17-0368
[35] Irmawanti, S., Luthfi, M., & Prihandini, P. W. (2022). Physiological responses of several beef cattle breeds based on environmental conditions in the Beef Cattle Research Station. IOP Conference Series: Earth and Environmental Science, 1114(1), 01207. https://doi.org/10.1088/1755-1315/1114/1/01207
[36] Irmawanti, S., Luthfi, M., & Prihandini, P. W. (2022). Physiological responses of several beef cattle breeds based on environmental conditions in the Beef Cattle Research Station. IOP Conference Series: Earth and Environmental Science, 1114(1), 01207. https://doi.org/10.1088/1755-1315/1114/1/01207
[37] Yan, G., Liu, K., Hao, Z., Shi, Z., & Li, H. (2021). The effects of cow-related factors on rectal temperature, respiration rate, and temperature-humidity index thresholds for lactating cows exposed to heat stress. Journal of Thermal Biology, 100, 103041. https://doi.org/10.1016/j.jtherbio.2021.103041
[38] Mateescu, R. G., Davila, K. M. S., Hernandez, A. S., Andrade, A. N., Zayas, G. A., Rodriguez, E. E., Dikmen, S., & Oltenacu, P. A. (2023). Impact of Brahman genetics on skin histology characteristics with implications for heat tolerance in cattle. Frontiers in Genetics, 14, 1107468. https://doi.org/10.3389/fgene.2023.1107468
[39] Slayi, M., & Jaja, I. F. (2025). Strategies for mitigating heat stress and their effects on behavior, physiological indicators, and growth performance in communally managed feedlot cattle. Frontiers in Veterinary Science, 12. https://doi.org/10.3389/fvets.2025.1513368
